COUNTING CONJECTURES

Counting conjectures and characters of almost simple groups

 Coordinatore TECHNISCHE UNIVERSITAET KAISERSLAUTERN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙444˙200 €
 EC contributo 1˙444˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET KAISERSLAUTERN

 Organization address address: GOTTLIEB-DAIMLER-STRASSE Geb. 47
city: KAISERSLAUTERN
postcode: 67663

contact info
Titolo: Mr.
Nome: Berthold
Cognome: Klein
Email: send email
Telefono: +49 631 205 3602
Fax: +49 631 205 4380

DE (KAISERSLAUTERN) hostInstitution 1˙444˙200.00
2    TECHNISCHE UNIVERSITAET KAISERSLAUTERN

 Organization address address: GOTTLIEB-DAIMLER-STRASSE Geb. 47
city: KAISERSLAUTERN
postcode: 67663

contact info
Titolo: Prof.
Nome: Gunter
Cognome: Malle
Email: send email
Telefono: +49 631 2052264
Fax: +49 631 2054427

DE (KAISERSLAUTERN) hostInstitution 1˙444˙200.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

finite    conjectures    prove    theory    character    assertions    conjecture    automorphisms    mckay    first    simple    almost    block    groups    characters    outer    irreducible    involve   

 Obiettivo del progetto (Objective)

'This proposal has two major goals: to understand the irreducible complex characters of the finite almost simple groups, and to apply this knowledge to prove two longstanding famous conjectures in the representation theory of finite groups: the McKay conjecture and the Alperin Weight Conjecture.

The first goal requires the study of the action of outer automorphisms of finite groups of Lie type on their irreducible characters and the solution of extension problems. The determination of the irreducible characters of all almost simple groups is a fundamental task of group theory. For the second goal, we will build on the recent reductions (by the PI and others) of both conjectures to assertions on characters of finite simple groups. To prove these assertions, one needs to construct certain equivariant bijections with respect to outer automorphisms, which will involve the results from the first goal. Furthermore, we propose to extend the reduction of the McKay conjecture to include several refinements, in particular the block-wise version and congruences of character degrees.

The project will involve the interplay of methods from the theory of algebraic groups, character sheaves, block theory and modular character theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PCG (2014)

The Elementary Theory of Partially Commutative Groups

Read More  

SURFARI (2011)

Arithmetic of algebraic surfaces

Read More  

NEURONAGE (2009)

Molecular Basis of Neuronal Ageing

Read More