GENENOISECONTROL

Controlling stochastic gene expression during development and stem cell differentiation

 Coordinatore KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110310
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW

 Organization address address: KLOVENIERSBURGWAL 29 HET TRIPPENHUIS
city: AMSTERDAM
postcode: 1011 JV

contact info
Titolo: Mr.
Nome: Don
Cognome: Van Velzen
Email: send email
Telefono: +31 30 21 21 800
Fax: +31 30 21 21 865

NL (AMSTERDAM) hostInstitution 2˙500˙000.00
2    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW

 Organization address address: KLOVENIERSBURGWAL 29 HET TRIPPENHUIS
city: AMSTERDAM
postcode: 1011 JV

contact info
Titolo: Prof.
Nome: Alexander
Cognome: Van Oudenaarden
Email: send email
Telefono: +1 617 253 4446
Fax: +1 617 258 6883

NL (AMSTERDAM) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

stem    microbial    organisms    expression    cells    phenotypic    fluctuations    gene    differentiation    developmental    stochastic    diversity    cell    fate   

 Obiettivo del progetto (Objective)

'The phenotypic differences between individual organisms can often be ascribed to underlying genetic and environmental variation. However, even genetically identical organisms in homogenous environments vary, suggesting that randomness in developmental processes such as gene expression may also generate diversity. My laboratory has intensively studied stochastic gene expression in microbial systems and more recently started to apply these concepts to multicellular organisms and stem cells. One of the major lessons learned from our work and others is that microbial systems tend to exploit stochastic gene expression by introducing phenotypic diversity into the population. However it is an open question whether stochastic gene expression benefits or hinders decision-making by cells in a developing embryo. On the one hand, the gene expression patterns of different cells during metazoan development must be aligned either to ensure proper tissue formation or maintain a coordinated timing of developmental events. This suggests that stochastic fluctuations in gene expression may be controlled or their effects may be buffered under normal conditions. On the other hand, stem cells might use fluctuations to prime differentiation. A stem cell might continuously fluctuate between different primed states each biased towards a different germ layer fate. As soon as an external differentiation signal appears the cell would rapidly differentiate towards the fate that was stochastically selected. The overarching goal of this proposal is to the understand how stochastic gene expression is controlled, or utilized, during development and stem cell differentiation using the nematode worm Caenorhabditis elegans and murine embryonic stem cells as experimental model systems. To obtain this goal we will use a combination of quantitative experiments, theoretical and computational approaches, and the development of novel technology.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

STREAMS (2013)

Measuring the Lumpiness of Dark Matter With Tidal Streams

Read More  

SCALPL (2008)

ScalPL : A Scalable Programming Language

Read More  

LILO (2011)

"Light-In, Light-Out: Chemistry for sustainable energy technologies"

Read More