SILICONSPIN

Spin Transport in Silicon Nanodevices

 Coordinatore CHALMERS TEKNISKA HOEGSKOLA AB 

 Organization address address: -
city: GOETEBORG
postcode: 41296

contact info
Titolo: Ms.
Nome: Ingrid
Cognome: Collin
Email: send email
Telefono: +46 31 7721601

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-02-01   -   2016-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB

 Organization address address: -
city: GOETEBORG
postcode: 41296

contact info
Titolo: Ms.
Nome: Ingrid
Cognome: Collin
Email: send email
Telefono: +46 31 7721601

SE (GOETEBORG) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

injection    temperature    detection    created    techniques    spin    room    local    spintronic    polarization    first    effect    silicon    fundamental    spintronics    hall   

 Obiettivo del progetto (Objective)

'Spintronics is the vision of using the spin of the electrons instead of its charge to perform information storage and processing. These spin based devices has the potential to make the future computers non-volatile, faster, with memory and processing integrated into a single chip, all with reduced energy consumption. A profound impact on the development of spintronics could come from exploiting spin degree of freedom in the main stream semiconductor like silicon at room temperature. The first goal of this proposal is to establish a physical understanding of the fundamental processes of efficient generation, sensitive detection, and effective manipulatipon of spin current in silicon. Spin polarization in silicon will be created by different methods such as - electrical spin injection, thermal spin injection, spin pumping, and spin Hall effect using ferromagnet/silicon heterostructures. Detection of the created spin polarization will be performed by combination of different techniques both in local and non-local geometry, for example by use of spin-valve measurements, Hanle measurements and inverse spin Hall effect measurements. Finally the manipulation of such spin polarization will be controlled by magnetic field and electric field. The aim of this proposal is to achieve all these operations in both n-type and p-type silicon at room temperature. The second goal is to implement silicon spintronic devices by integrating different functionalities obtained from our first goal. While relevant for the development of a spin based transistor, this work aims to go well beyond that, aiming for new routes to create and control spins in silicon nanostructures. For realization of this we propose to develop novel approaches for fabrication of silicon based nano-spintronic devices and design new transport measurement techniques which will lead to these fundamental physics experiments, and possibly new applications.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MIRNAS/22Q11DS (2011)

NEUROGENESIS IN 22Q11.2 DELETION SYNDROME: ROLE OF microRNAs

Read More  

CARMUSYS (2009)

Carbohydrate Multivalent Systems as tools to study Pathogen interaction with DC-SIGN

Read More  

IPOROSOCIP (2011)

Impulse Purchases and Overspending: The Role of Shopping Orientations and Consumer Information Processing

Read More