TRRAP & BRAIN CANCER

Targeted inhibition of TRRAP as a strategy against aggressive brain cancer

 Coordinatore UNIVERSITY OF LEEDS 

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090

UK (LEEDS) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

stem    cancer    protein    phenotype    therapeutic    treat    btsc    invasion    therapy    poor    possess    trrap    cells    damaging    tumors    strategy    btscs    dna    aggressive    brain    function    tumor    undifferentiated    vivo   

 Obiettivo del progetto (Objective)

'Patients with aggressive brain cancer have a very poor prognosis with an average life expectancy of only ~12 to 17 months. High grade brain tumors are extremely difficult to treat due to tumor cell invasion, plus resistance of tumor cells to DNA-damaging therapy. This cellular aggressiveness within brain tumors has been attributed to a subpopulation of tumor cells that possess stem cells-like features. Unlike differentiated tumor cells, brain tumour stem cells (BTSCs) possess the ability to self-renew, to withstand DNA-damaging therapy, and to give rise to new tumor mass. Therefore, targeting BTSCs is expected to improve the efficiency of anti-brain cancer therapy. In particular, targeting pathways that sustain the undifferentiated state of BTSCs is a novel strategy to treat aggressive brain tumors. However, this approach is hampered by a poor understanding of appropriate targets promoting the BTSC phenotype. Recently, we have demonstrated that the adapter protein TRRAP maintains BTSCs in an undifferentiated and highly tumorigenic state. Consistently, elevated expression of TRRAP in human brain tumors has a strong negative effect on patient survival. Therefore, we aim to provide a basis toward the development of an effective therapeutic strategy against the malignant function of TRRAP in BTSCs. To this end, we will use our established BTSC assay system and BTSC in vivo models in combination with differential proteomics to characterize TRRAP protein domains and TRRAP-protein interactions that critically promote the BTSC phenotype. Moreover, we will investigate the role of TRRAP during brain tumor invasion and potential additive effects between DNA-damaging therapy and inhibition of TRRAP function in vivo. Overall, these interrelated approaches will validate TRRAP as a brain tumor target. Ultimately, we hope to reveal and exploit the Achilles’ heel of TRRAP-dependent tumorigenesis for developing a targeted therapeutic strategy against BTSC-driven brain tumors.'

Altri progetti dello stesso programma (FP7-PEOPLE)

IDOR (2007)

Water Resource Data Integration and Model Development for Management and Sustainability of River-Basin Resources

Read More  

MANETEI (2010)

Management of Emergent Technologies for Economic Impact

Read More  

LIPOPROT (2011)

New chemical tools for profiling protein lipidation in cancer

Read More