MICROENERGY

Microbial life under extreme energy limitation

 Coordinatore AARHUS UNIVERSITET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 2˙488˙423 €
 EC contributo 2˙488˙423 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110310
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET

 Organization address address: Nordre Ringgade 1
city: AARHUS C
postcode: 8000

contact info
Titolo: Ms.
Nome: Irene
Cognome: Hjortsberg
Email: send email
Telefono: 4589423422

DK (AARHUS C) hostInstitution 2˙488˙423.00
2    AARHUS UNIVERSITET

 Organization address address: Nordre Ringgade 1
city: AARHUS C
postcode: 8000

contact info
Titolo: Prof.
Nome: Bo Barker
Cognome: Jørgensen
Email: send email
Telefono: +45 8942 3314
Fax: +45 8942 2722

DK (AARHUS C) hostInstitution 2˙488˙423.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cells    living    subsurface    biosphere    metabolic    deep    energetic    microorganisms    analyze    cellular    microbial    global    biomass    communities    coupling    life    mean    carbon    energy   

 Obiettivo del progetto (Objective)

'Our aim is to understand basic functions of the predominant microbial life on our planet: anaerobic communities buried in the seabed and subsisting at the energetic limit for cellular processes. An estimated 90% of all prokaryotic microorganisms on Earth, comprising 1/10 of all living biomass, exist in the deep subsurface biosphere with a cellular energy flux that is orders of magnitude below anything studied in laboratory cultures so far. The cells are essentially non-growing with mean generation times of hundreds to thousands of years. Yet, these microorganisms drive major processes in the geosphere and control element cycles that affect hydrocarbon reservoirs, ocean chemistry, and global climate on geological time scales.

We will use and develop new approaches to study microbial life under extreme energy limitation with the aim to understand the microbial and environmental interactions in the deep biosphere. We will particularly target methanogenesis as a key process in the marine carbon cycle and the great diversity of unknown archaea. We will explore mean cellular energy fluxes of subsurface microbial communities and estimate the fraction of dormant versus active cells. We will determine the turnover rate of living and dead microbial biomass in the deep biosphere and analyze the energetic or kinetic controls on key metabolic processes. We will perform high-capacity genomic sequence analyses and use sensitive chemical and isotopic techniques to search for the coupling between phylogenetic identity and metabolic potential of dominant microorganisms. We will also analyze the genetic potential and physiological activity at the single-cell level to identify this coupling. Finally, we will apply the new microbiological and biogeochemical understanding of subsurface carbon mineralization in a global model of methane cycling in the sea bed.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CELLTYPESANDCIRCUITS (2010)

Neural circuit function in the retina of mice and humans

Read More  

SAFECON (2011)

New Computational Methods for Predicting the Safety of Constructions to Water Hazards accounting for Fluid-Soil-Structure Interactions

Read More  

CYFI (2012)

Cycle-Sculpted Strong Field Optics

Read More