ENPHOC

Environmental & Dynamical Effects in Computational Photochemistry

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 200˙371 €
 EC contributo 200˙371 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-25   -   2015-03-24

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

UK (LONDON) coordinator 200˙371.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

individual    dynamics    simulation    molecular    structure    electronic    studied    environment    molecule    solvent    upon    photochemical    reaction    researcher   

 Obiettivo del progetto (Objective)

'The use of light pulses in chemistry offers the perspective to finely control atomic and molecular motion in a way that not only redefines the vision of a chemical reaction in itself, but also opens a broad new field of applications and functional device miniaturization, generically called nanotechnology. In order to deliver upon this promise, it must be possible to accurately predict, not only individual molecular behaviour of excited states, but also its time evolution and how this behaviour is changed through the interaction of the molecule with its environment. The aim of the current proposal is to go beyond the individual molecule static picture, and advance our knowledge on the dynamics of photochemical systems and the effects of an environment upon them, but also to consolidate methodology and procedures that allow predictability and transferability of simulation results. This will be done by systematic comparison and assessment of different simulation methods at distinct levels of theory. This proposal combines high level electronic structure calculations and state of the art dynamics simulation methods to study the photochemical reactivity of Protonated Schiff Bases, a prototypical cis-trans isomerizing system, relevant for many photobiological processes. Namely the effect of a solvent environment on the reaction paths of multiple izomerization and on the extended crossing seam will be studied in detail. Dynamics of the system will be studied, using quantum dynamics and QM/MM methodologies, for the individual molecule and the environment. This proposal builds upon the highly complementary skills of the researcher in solvent effects and non-adiabatic dynamics, and the expertises of one of the world leading research groups in the development of electronic structure solutions in photochemistry. The training provided by the fellowship will empower the researcher with a very complete set of tools which will be instrumental in achieving professional maturity.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CO2-MATE (2010)

CO2 Multiphase reActive Transport modElling

Read More  

EUMECH (2012)

Europe meets China – a broader picture of contemporary China

Read More  

JUMO (2014)

KU Leuven Junior Researcher Outgoing Mobility Programme

Read More