MOSKIN

Morphing Skin with a Tailored Non-conventional Laminate

 Coordinatore CODET BV 

 Organization address address: KERKSTRAAT 3
city: DELFT
postcode: 2611 GX

contact info
Titolo: Ms.
Nome: Irena
Cognome: Rodov
Email: send email
Telefono: 31650630964

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 398˙000 €
 EC contributo 296˙950 €
 Programma FP7-JTI
Specific Programme "Cooperation": Joint Technology Initiatives
 Code Call SP1-JTI-CS-2011-02
 Funding Scheme JTI-CS
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2014-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CODET BV

 Organization address address: KERKSTRAAT 3
city: DELFT
postcode: 2611 GX

contact info
Titolo: Ms.
Nome: Irena
Cognome: Rodov
Email: send email
Telefono: 31650630964

NL (DELFT) coordinator 209˙850.00
2    UNIVERSITY OF PATRAS

 Organization address address: UNIVERSITY CAMPUS RIO PATRAS
city: RIO PATRAS
postcode: 26500

contact info
Titolo: Prof.
Nome: Dimitrios
Cognome: Saravanos
Email: send email
Telefono: 302611000000
Fax: 302611000000

EL (RIO PATRAS) participant 87˙100.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

formulation    flexible    deformations    energy    stiffnesses    bending    coupled    tool    load    loads    shape    actuation    skin    strength    paths    constraints    fibre    stiffness    points    layers    composite    optimisation    designed    individual    deformed    laminate    aerodynamic    construction    optimal    theoretically   

 Obiettivo del progetto (Objective)

'The proposal aims to extend the capabilities of a composite laminate design tool D2B (Designed to Build) to demonstrate a flexible load carrying structural skin for morphing wings. A unique composite skin construction that will allow the skin stiffnesses to vary spatially so as to provide the most flexible skin that can be morphed with minimum energy requirements, while aerodynamic load carrying capability is maintained. The software tool will be used to produce laminate designs that fully take into account coupled bending and in-plane stiffnesses so that both load paths to achieve proper load transmission from the points of actuation loads on the skin to the fixed points, while the coupled tailored bending stiffness distribution will ensure achieving prescribed deformations. The desired stiffness distribution will be achieved by spatially varying the fibre orientation of the individual layers of the laminate by adopting a steered fibre construction, and by selectively terminating certain layers of the laminate to create a blended laminate thickness variation.

The integrated tools will be used in an optimisation formulation with the objective of achieving a user defined deformed shape with constraints on strength, stiffness, fabrication limitations, actuation forces, while accounting for large deformations and aerodynamic loads. The optimisation formulation will also be able to calculate the energy requirement to achieve the deformed shape. The optimal fibre path distribution of the individual layers will be designed in a two-step design formulation. The first step will produce theoretically optimal stiffness distribution of the skin in terms of stiffness matrices, while satisfying strength and a limited number of manufacturing constraints. In the second step, fibre paths of the individual layers will be computed so as to achieve theoretically optimised stiffness distribution. The optimal design will be fabricated using a state of the art fibre-placement machine.'

Altri progetti dello stesso programma (FP7-JTI)

GREENBARRELS (2012)

Contra-Rotating Open Rotor (CROR) Propeller barrels

Read More  

THERMICOOL (2014)

Thermoelectric cooling using innovative multistage active control modules

Read More  

SUPREMAE (2011)

A Supervised Power Regulation for Energy Management of Aeronautical Equipments

Read More