MAGMIST

From the magnetized diffuse interstellar medium to the stars

 Coordinatore COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙312˙267 €
 EC contributo 1˙312˙267 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Dr.
Nome: Patrick
Cognome: Hennebelle
Email: send email
Telefono: 33144322516
Fax: 33144323992

FR (PARIS 15) hostInstitution 1˙312˙267.00
2    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Ms.
Nome: Nathalie
Cognome: Judas
Email: send email
Telefono: +33 1 69 08 77 88
Fax: +33 1 69 08 74 01

FR (PARIS 15) hostInstitution 1˙312˙267.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cores    diffuse    protostars    magnetic    simulation    consistently    observations    self    physical    star    ism    models   

 Obiettivo del progetto (Objective)

'Understanding star formation remains one of the greatest challenges of modern astronomy. Indeed in this field the progresses have been limited due, first, to the huge dynamics of spatial and temporal relevant scales and, second, the great variety and non-linearity of the physical processes involved in the formation of stars. The present proposal will contribute to provide a complete and coherent picture of the star formation process by self-consistently following the evolution of the interstellar matter from the very diffuse gas up to the protostars. This will be achieved by performing a series of heavy MHD numerical simulations with an adaptive mesh refinement code while subdivising the problem in three major steps namely the formation of large scale molecular clouds, the formation of star forming cores and the collapse of protostellar cores. In particular, the impact of the magnetic field and the radiative processes will be self-consistently treated using appropriate schemes. At each step, comparisons with both analytical models and observations will be performed by using existing models or developing new ones and calculating synthetic observations. The simulation results will also be used to test and improve the methods and the algorithms used by observers to extract the physical information from their data. An existing database, where the simulation results are available, will be further developed. The present proposal pursues two aims: i) achieving a global understanding of the star formation process, in particular by elucidating the link between the physical properties of the large scale ISM and the characteristics of the protostars, such as their mass, magnetisation and angular momentum ii) provide a better insight of the structure, nature and role of the magnetic field and the turbulence from the diffuse to the dense parts of the ISM.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NANOSENSOMACH (2011)

Nanoengineered Nanoparticles and Quantum Dots for Sensor and Machinery Applications

Read More  

REDUNDANCY (2013)

Functional redundancy of bacterial communities in the laboratory and in the wild

Read More  

MOCOPOLY (2012)

"Multi-scale, Multi-physics MOdelling and COmputation of magneto-sensitive POLYmeric materials"

Read More