SCOPE

Strategies to Control Oxygen uptake and energy Partitioning in Ectotherms

 Coordinatore STICHTING KATHOLIEKE UNIVERSITEIT 

 Organization address address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ

contact info
Titolo: Mrs.
Nome: Jjm
Cognome: Vernooij
Email: send email
Telefono: 31243652616

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2017-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT

 Organization address address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ

contact info
Titolo: Mrs.
Nome: Jjm
Cognome: Vernooij
Email: send email
Telefono: 31243652616

NL (NIJMEGEN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

explanation    ectotherms    larger    trade    body    maturation    size    oxygen    resource    history    energy    organisms    tsr    food    life    scope    lower    temperatures    smaller    temperature    aquatic    off   

 Obiettivo del progetto (Objective)

'Body size is a primary determinant of key life-history traits such as fecundity, longevity and dispersal, thus governing the way organisms interact with each other and their environment. Given the large consequences of body size there is great interest in why do organisms differ in size. Temperature is a major corollary of body size. At higher temperatures, individuals grow faster but to a smaller final size. This temperature size rule (hereafter termed TSR) has been documented widely and is one of the strongest patterns in ecology, yet it remains poorly understood. It is a life-history puzzle, because altered resource supply (e.g. food) usually has parallel effects on both growth rate and adult body size. During the life-history, resources can be allocated towards either maturation or growth, giving rise to the well-known trade-off between early maturation at a small size or late maturation at a larger size. One explanation for the TSR could be that higher temperatures shift this trade-off towards early maturation. Another explanation is related not to energy expenditure, but its acquisition. Oxygen is used to metabolize food and generate energy and is thus central to an organisms’ scope for growth. Breathing underwater is challenging, as the availability of oxygen is orders of magnitude lower than in air. Respiratory surfaces are relatively smaller in larger organisms (lower surface area to volume ratio). Hence, oxygen could be the key resource limiting growth in aquatic ectotherms. The SCOPE project will test the hypothesis that for aquatic ectotherms, oxygen limitation underlies temperature effects on growth and size at maturity. A key aim is to integrate life-history theory and respiration physiology to understand and predict the ecological consequences of temperature, through its effect on metabolism, growth, reproduction and survival in aquatic ectotherms.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CORAGEM (2011)

COpper isotopes as indicators of Redox processes during Acid mine drainage GEneration and Mitigation

Read More  

MIGBTB (2009)

Molecular mechanisms of germ cell migration across the mammalian blood-testis barrier

Read More  

SHEMAT (2012)

Training Network for Self-Healing Materials: from Concepts to Market

Read More