FORCECHAPERONES

Chaperones mediated mechanical protein folding

 Coordinatore KING'S COLLEGE LONDON 

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Mr.
Nome: Paul
Cognome: Labbett
Email: send email
Telefono: +44 020 7848 8184
Fax: 442078000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Mr.
Nome: Paul
Cognome: Labbett
Email: send email
Telefono: +44 020 7848 8184
Fax: 442078000000

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

chaperones    along    individual    conformational    molecular    molecule    mechanical    force    pathway    protein    effect    experiments    polypeptide    folding    stability    proteins    single   

 Obiettivo del progetto (Objective)

'The main goal of this proposal is to understand the molecular mechanism by which proteins equilibrate under the effect of a constant stretching force and the effect of molecular chaperones in the mechanical folding of an individual protein. We will use the newly developed single molecule force-clamp spectroscopy technique to elucidate the conformational dynamics of a single refolding protein during its individual folding trajectory from highly extended states. A key feature of mechanical folding experiments is that the different conformations visited by the folding polypeptide can be unambiguously identified according to their distinct mechanical stability. The final folding transition is identified by the full recovery of the protein mechanical stability. These single molecule experiments have highlighted the conformational richness encountered along the folding pathway of an individual protein. A missing keystone in the accepted folding picture lies in understanding the molecular mechanisms by which some proteins fail to recover their natively folded conformation, triggering the aggregation process. Using a single molecule approach, here we aim at identifying the individual step along the folding pathway that prevents culmination of successful folding. In this vein, while much has been discovered about mechanical folding in the last years, the question of how chaperones will help the mechanical folding process remained elusive. Within a multidisciplinary approach, here we propose a series of innovative experiments to directly probe the effect of force on the function of an individual folding polypeptide in the absence or presence of molecular chaperones, of common occurrence in nature.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PROTDNABINDSPEC (2009)

Inferring DNA binding specificities through in silico folding of natively unstructured protein regions

Read More  

ANAPHI-PROMO (2014)

Analog Photonic Information Processing Modules

Read More  

CNKHIV (2011)

Characterization of NK cell distributions and functions in human tissues in HIV-1 pathogenesis

Read More