TOP-ANYON-ENT

"Complex Topology, Anyons, and Entanglement"

 Coordinatore UNIVERSITY OF BRISTOL 

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mrs.
Nome: Audrey
Cognome: Michael
Email: send email
Telefono: +44 117 3317371

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 282˙561 €
 EC contributo 282˙561 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mrs.
Nome: Audrey
Cognome: Michael
Email: send email
Telefono: +44 117 3317371

UK (BRISTOL) coordinator 282˙561.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

computing    transport    topology    mathematics    networks    developments    cohomology    topological    physics    particle    fundamental    quantum    entanglement    recent    geometry    theory   

 Obiettivo del progetto (Objective)

'Topology and geometry are of fundamental importance in quantum physics. This proposal concerns applications of recent developments in topology and geometry to outstanding problems in condensed matter physics and quantum information theory. The first aim is to lay the foundations for the understanding of the influence of complex topology, which gives rise to generalized anyon statistics, on many-particle transport properties on networks, on entanglement of many-particle network states, and on topological quantum computing. The second aim is application of recent results on symplectic geometry and equivariant cohomology to the description and classification of quantum entanglement, the central concept in quantum information theory. The proposed research is multidisciplinary. On the mathematics side, it involves combinatorial graph theory, algebraic topology, cohomology of quotients and homogenous spaces. On the physics side, it concerns fundamental open problems in quantum many-body physics and quantum information theory. It is also very timely. The recent results on anyons on graphs may lead to new phenomena in quantum transport on networks, for example, generalizations of the integer and fractional quantum Hall effects. They can also provide new developments in topological quantum computing, especially in the topological quantum error correcting codes such as Kitaev's toric code. The distinguishing feature of the proposal is the unusual combination of methods, techniques and people involved. The research will be conducted in two world leading scientific institutions: Department of Physics, Massachusetts Institute of Technology and School of Mathematics of University of Bristol.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PLANT EPIDERMIS (2010)

The role of the DEK1 pathway in plant epidermis cell fate specification

Read More  

PSYCHIAPROTEGENOMIC (2007)

Trancriptional control of dendritic arbors morphology in pathogeny and therapy of neuropsychiatric diseases

Read More  

EVOSPIKE (2011)

Evolving Probabilistic Spiking Neural Networks for Spatio-Temporal Pattern Recognition

Read More