BM 3D-AGING

Multidimensional Analysis of Bone Marrow Microenvironmental Dynamics during Aging

 Coordinatore UNIVERSITAET ZUERICH 

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Markus
Cognome: Manz
Email: send email
Telefono: +41 442553899

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-08-01   -   2017-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET ZUERICH

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Markus
Cognome: Manz
Email: send email
Telefono: +41 442553899

CH (ZURICH) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

disorders    hspc    aging    differentiation    stromal    bm    dynamics    functional    cells    cell    undergo    age    hematopoietic    regulatory    related    hspcs    regulation    bone    vascular   

 Obiettivo del progetto (Objective)

'Sustained production of mature blood cell types relies on the continuous differentiation and self-renewal of a rare subset of hematopoietic stem and progenitor cells (HSPCs). HSPCs reside in bone marrow (BM) cavities within defined anatomical locations, also known as niches, where they receive and integrate regulatory cues that control their functional capacities to suit the changing physiological demands. BM spaces are extremely complex environments containing hematopoietic cells at different stages of differentiation, a heterogeneous stromal cell compartment of mesenchymal origin, an intricate vascular network and cells involved in bone metabolism. Not until recently have we started to gain some insight of the 3-d microanatomical organization, the population dynamics and the regulatory roles of these specialized subsets. During the aging process, HSPCs experience a functional decline, which critically contributes to the age-related disorders of the hematopoietic system. As HSPCs undergo stringent regulation from specific niche components, age-related alterations of HSPC physiology are hypothesized to, at least partially, derive from microenvironmental, HSPC-extrinsic factors. Notably, the functional and structural transformations that BM stromal and vascular populations undergo as a result of aging, are poorly characrterized to date. The fundamental aim of this proposal is to exploit novel imaging technologies and flow cytometric analysis to visualize, quantify and reconstruct in 3-dimensions the dynamics of the aging of BM microenvironment. Subsequently, we intend to describe how aged induced disorders of BM stroma ultimately control HSPC maintenance and perturb the homeostatic regulation of the hematopoietic system.'

Altri progetti dello stesso programma (FP7-PEOPLE)

UPECBCG (2013)

Cellular and molecular mechanisms of bladder immune responses to uropathogens and therapeutics

Read More  

ONCOMIRNA-BIOGENESIS (2008)

Biogenesis of Oncogenic MicroRNAs : from the structure of the microRNA processing complexes to the inhibition of the maturation of human oncogenes

Read More  

DESIGNING CATALYSIS (2011)

Designing catalysis: Nitrogen-carbon ylids as methylene donors

Read More