FUNCCAHNHILLIARDPNP

Variational models of network formation and ion transport: applications to polyelectrolyte membranes

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3137
Fax: +972 4 823 2958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3137
Fax: +972 4 823 2958

IL (HAIFA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

functionalized    morphology    model    models    hilliard    ionomer    pore    fuel    water    conductivity    membranes    cahn    treatment    energy    performance    amphiphilic    membrane    transport    cells    network    material   

 Obiettivo del progetto (Objective)

'The functionalized Cahn-Hilliard energy is a phase-field characterization of an interfacial energy used to describe dynamics of amphiphilic network formation. We have successfully applied the functionalized Cahn-Hilliard energy to model the morphology of water nano-pore networks in ionomer membranes. The resulting morphology model was validated with experimental scattering data of Nafion, an ionomer membrane which is a critical component in fuel cells.

It is natural to use, as a basis, the successful morphology model to study the effect of morphology on membrane performance, e.g., conductivity. The functionalized Cahn-Hilliard energy offers, however, only a phenomenological treatment of the electrostatic forces between the polymer and the water. Such a treatment effectively blocks important extensions of the model.

The main goal of this proposal is the development, analysis, and simulation of continuum models which characterize amphiphilic network formation coupled to ion transport. Attaining this goal requires redeveloping key components of the functionalized Cahn-Hilliard model while operating on a wide range of scales, e.g., from the non-uniform water structure in a pore at the nanoscale to membrane conductivity at the macroscale. A key application of this proposal is to study conductivity and selectivity of ionomer membranes and their dependence upon morphology and ionic concentrations.

The project is of clear interdisciplinary nature, merging problems, ideas and tools from Mathematics, material science, solution chemistry and soft matter physics. The design and performance of novel clean energy devices such as fuel cells, flow batteries, or organic solar cells critically depends on the optimized coupling between material nanostructure, electrostatics, charge transport and nanoflows. Any progress in the directions proposed above will open the way to robust phase-field models which can incorporate and couple these four effects.'

Altri progetti dello stesso programma (FP7-PEOPLE)

IMPACT (2012)

Improved Millets for Phosphate ACquisition and Transport

Read More  

GALAXIES BIRTH (2010)

The birth of the first stars and galaxies

Read More  

MESO-IMPLANT (2008)

Nanostructured Mesoporous Coatings of Implant Materials for Improved Bone Formation

Read More