NNJETS

Stability of Non-Newtonian jets and implications for the onset of turbulence

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-28   -   2015-10-27

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fluid    fellowship    transition    techniques    jets    fluids    turbulence    linear    instability    newtonian    flows    subject    candidate    stability   

 Obiettivo del progetto (Objective)

'The manner by which fluid flows go from a laminar to a chaotic turbulent state is striking, and has significant biological, environmental and technological implications. As a result, a great deal of research effort has focused not only on studying transition to turbulence, but also on predicting and controlling its onset. To date, most of the advanced techniques for transition research have focused primarily on the ``pathways to turbulence' in Newtonian, or simple, fluids. These efforts, however, exclude a major class of flows, namely complex and non-Newtonian fluids, which are at the core of the pharmaceutical industry, oil and gas, and plastic and paper-making processes. The proposed research addresses this gap: a framework for the simulations of the linear and non-linear stages of instability in two-fluid, non-Newtonian flows will be established, and will be used to characterise and control transition in two-phase non-Newtonian jets, a flow configuration ubiquitous in the above technologies. The subject of the fellowship is innovative as the dynamics of non-Newtonian jets are less explored relative to their Newtonian counterpart. The latter have been the subject of recent advances in stability and direct simulation techniques, some of which were developed by the applicant. These recently developed methods are key to the design, optimisation and control of non-Newtonian flows which have numerous industrial and commercial applications. Furthermore, predictive capabilities and design tools for other transitional flows will improve, since the study of stability of non-Newtonian jets can be translated to a host of other shear flows. The fellowship will translate the candidate's expertise in advanced instability methods from Newtonian to non-Newtonian flows, will further the candidate's academic career, and will foster intra-European scientific exchange, such as a cooperation between Imperial College London and Swedish Royal Institute of Technology.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NMVSBA (2010)

Novel Magnetic Ventilation System for Building Application

Read More  

NEURO-VPA (2013)

Neural Mechanisms of Visual Perception and Attention

Read More  

MIND (2009)

Investigation of electron induced chemical control using momentum imaging of negative ions from dissociative electron attachment

Read More