QC-LAB

Quantum Computer Lab

 Coordinatore TECHNISCHE UNIVERSITEIT DELFT 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 15˙000˙000 €
 EC contributo 15˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-SyG
 Funding Scheme ERC-SyG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2019-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT LEIDEN

 Organization address address: RAPENBURG 70
city: LEIDEN
postcode: 2300 RA

contact info
Titolo: Mr.
Nome: Ton
Cognome: Brouwer
Email: send email
Telefono: +31 71 527 3149
Fax: +31 71 527 5269

NL (LEIDEN) beneficiary 1˙670˙000.00
2    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Ms.
Nome: Jose
Cognome: Van Vugt
Email: send email
Telefono: +31 15 2787413

NL (DELFT) hostInstitution 13˙330˙000.00
3    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Prof.
Nome: Carlo Willem Joannes
Cognome: Beenakker
Email: send email
Telefono: 31715275532

NL (DELFT) hostInstitution 13˙330˙000.00
4    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Prof.
Nome: Leonardus Petrus
Cognome: Kouwenhoven
Email: send email
Telefono: 31152786064
Fax: 31152786064

NL (DELFT) hostInstitution 13˙330˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

quantum    mechanics    superconducting    qc    memory    science    engineering    types    objects    computer    qubits    processor    entanglement    circuit    superposition   

 Obiettivo del progetto (Objective)

The world of atoms is governed by the rules of quantum mechanics. Over the past century, quantum-mechanical phenomena such as superposition and entanglement have been observed and studied with great precision. Today, we are entering a new era in which we can hope to explore quantum mechanics in larger objects. The science of quantum mechanics in more complex objects is barely known and as a result quantum mechanics is rarely explicitly used in technology. Theoretically, superposition and entanglement could be exploited as a new resource in a wide variety of future applications. We focus on information science and investigate the use of quantum mechanics in computing, i.e. a quantum computer (QC). If information is encoded in quantum superpositions and processed by exploiting entanglement, a QC can solve computational problems that are beyond the reach of conventional computers. Building a QC is, however, an enormous scientific challenge because the fragile quantum bits need to be protected from and corrected for even the smallest disturbances by the environment. Meeting this challenge requires a synergetic effort combining the best of quantum theory, electrical engineering, materials science, applied physics and computer science. This proposal aims to achieve a robust, exemplary QC. We propose a circuit containing processor qubits (two types: superconducting transmon qubits and spin qubits in silicon quantum dots), memory qubits (two types: topological qubits with nanowires and donor qubits), and a quantum databus (superconducting striplines). Our goal is to demonstrate a 13-qubit circuit that incorporates fault-tolerance through implementation of a surface code. We will demonstrate back-and-forth quantum state transfer between processor and memory qubits. Our team brings together the required expertise into a single “QC-lab” enabling us to bring our understanding of quantum mechanics to the next level and push QC to the tipping point from science to engineering.

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

WASSR (2009)

Water anomalies in the stretched and supercooled regions

Read More  

XSHAPE (2010)

Expressive Shape: Intuitive Creative and Optimization of 3D Geometry

Read More  

IIP (2014)

Individualized Implant Placement

Read More