MACTHERVAC

Modulation of a novel population of immune suppressive tumoural macrophages and the therapeutic vaccination of cancer

 Coordinatore KING'S COLLEGE LONDON 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙499˙994 €
 EC contributo 1˙499˙994 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2018-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Dr.
Nome: James Noble
Cognome: Arnold
Email: send email
Telefono: 7876450059

UK (LONDON) hostInstitution 1˙499˙994.00
2    KING'S COLLEGE LONDON

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Mr.
Nome: Paul
Cognome: Labbett
Email: send email
Telefono: 442078000000

UK (LONDON) hostInstitution 1˙499˙994.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

suppression    protein    immune    expression    vaccine    tumour    tumours    drug    cancer    inhibition    snmp    ho    breast    cells    mammary    tumoural    treatment    human    lung    clinical   

 Obiettivo del progetto (Objective)

'The therapeutic vaccination against breast cancer, and more widely all solid tumours, has largely been ineffective in clinical trials. This failure has been attributed to ‘immune editing’ of the cancerous cells, or to suppression of T cell functions within the tumour. In relation to the later, we have identified a novel population of tumoural macrophages, marked by the expression of fibroblast activation protein-alpha (FAP) which can mediate tumoural immune suppression through the enzyme heme oxygenase-1 (HO-1). Selective inhibition of HO-1 with tin mesoporphyrin (SnMP), a drug which has already been administered to infants for the treatment of neonatal jaundice, permits immunological control of tumour growth in transplantable Lewis lung carcinoma tumours. This proposal seeks to evaluate SnMP as a novel cancer immunotherapy for the treatment of breast cancer. We have demonstrated that HO-1 cells are recruited into mammary tumours of a relevant spontaneous murine model of breast cancer. A vaccine strategy will be developed targeting telomerase, a vaccine target already in clinical trial for human breast cancer. The effect on mammary tumour growth of a vaccine induced anti-tumour immune response, alongside HO-1 inhibition to alleviate immune suppression, will be assessed. Lung metastases in these mice, and their response to treatment, will also be studied. The HO-1 expressing cells in human breast cancer will be quantitated and characterised at both the protein and transcriptome levels to validate the approach. Novel immuno-therapies directed at modulating HO-1 expression will also be investigated, facilitated by the development of a transgenic HO-1 reporter mouse which will co-express green fluorescent protein and luciferase driven by the promoter and response elements of the HO-1 gene. As cancer vaccines have already been developed, and as we have identified a drug, SnMP, which may circumvent tumoural immune suppression, this proposal is clinically relevant.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ENDOSEXDET (2011)

The impact of endosymbionts on the evolution of host sex determination mechanisms

Read More  

PLACQED (2008)

Plasmonic cavity quantum electrodynamics with diamond-based quantum systems

Read More  

GENOMIC STABILITY (2008)

Genomic stability -chromosome segregation and repair

Read More