Opendata, web and dolomites

DeepLight SIGNED

Deep imaging with time-reversed light

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DeepLight project word cloud

Explore the words cloud of the DeepLight project. It provides you a very rough idea of what is the project "DeepLight" about.

doctrine    photons    scientists    inaccessible    fraction    exploited    until    structure    least    fundamental    upside    discovered    uses    layer    90    neuroscience    mammalian    subcortical    resolution    confocal    neuron    harnessing    light    functional    allowed    first    leaves    fluorescence    birth    previously    depths    intact    barrier    structures    hundred    circuitry    microscopy    rodent    futile    ballistic    unreachable    photon    vivo    nearly    micro    oacute    rejecting    formulate    scattering    imaging    live    becomes    break    reversal    turning    tissue    image    deepest    ex    selecting    mm    primate    neuronal    ram    layers    attempt    limitation    techniques    enabled    cajal    hardly    remarkable    deep    time    scattered    unprecedented    neocortex    outside    99    power    progress    function    deeper    correlations    representing    invasive    probe    correlational    strategy    speed    brain    conventional    critical    modern    microscope    optical    breakthroughs    circuits    6b   

Project "DeepLight" data sheet

The following table provides information about the project.

Coordinator
CHARITE - UNIVERSITAETSMEDIZIN BERLIN 

Organization address
address: Chariteplatz 1
city: BERLIN
postcode: 10117
website: www.charite.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙491˙235 €
 EC max contribution 1˙491˙235 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHARITE - UNIVERSITAETSMEDIZIN BERLIN DE (BERLIN) coordinator 1˙491˙235.00

Map

 Project objective

Microscopy enabled the birth of modern neuroscience, by allowing Ramón y Cajal to formulate the neuron doctrine. Since then, remarkable advances in optical resolution, speed and probe development allowed scientists to study the function of neuronal circuits with ever increasing detail – with one critical limitation: No conventional microscope can focus light deeper into intact tissue than a fraction of a mm. This leaves 90% of the intact rodent brain and over 99% of the intact primate brain inaccessible. As a result, the deepest layers of the neocortex and nearly all subcortical structures are currently outside the reach of non-invasive microscopy, representing a fundamental barrier towards further progress in understanding the brain. Existing fluorescence microscopy techniques, such as confocal and two-photon microscopy, attempt to image deeper by rejecting scattered light or by selecting non-scattered (ballistic) photons for focusing. However, beyond depths of several hundred µm this approach becomes futile because hardly any ballistic photons remain. We recently achieved two breakthroughs by turning this strategy upside down and focusing with scattered photons: First, we developed a new approach for fluorescence microscopy that uses a process called optical time reversal, with which we achieved an unprecedented imaging depth of 2.5 mm in ex vivo tissue. Second, we discovered a correlational structure of scattered light, which can be exploited for deep tissue imaging. Still, fundamental challenges remain for in vivo imaging. The goal of this proposal is to break the depth barrier of microscopy and investigate previously unreachable areas of the live brain, by harnessing optical time reversal and scattering correlations. We will demonstrate the power of this approach in layer 6b, the deepest and least understood layer of the mammalian neocortex. This project will thus enable functional imaging of neuronal circuitry at depths that have until now been inaccessible.

 Publications

year authors and title journal last update
List of publications.
2017 Gerwin Osnabrugge, Roarke Horstmeyer, Ioannis N. Papadopoulos, Benjamin Judkewitz, Ivo M. Vellekoop
Generalized optical memory effect
published pages: 886, ISSN: 2334-2536, DOI: 10.1364/optica.4.000886
Optica 4/8 2020-04-08
2018 Maximilian Hoffmann, Ioannis N. Papadopoulos, Benjamin Judkewitz
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device
published pages: 22, ISSN: 0146-9592, DOI: 10.1364/OL.43.000022
Optics Letters 43/1 2020-04-08
2018 Mykola Kadobianskyi, Ioannis N. Papadopoulos, Thomas Chaigne, Roarke Horstmeyer, Benjamin Judkewitz
Scattering correlations of time-gated light
published pages: 389, ISSN: 2334-2536, DOI: 10.1364/OPTICA.5.000389
Optica 5/4 2020-04-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEPLIGHT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEPLIGHT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More