Physics of Atoms with Attosecond Light Pulses


Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 2˙047˙000 €
 EC contributo 2˙047˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2019-02-28


# participant  country  role  EC contrib. [€] 

 Organization address address: Paradisgatan 5c
city: LUND
postcode: 22100

contact info
Titolo: Mrs.
Nome: Harriett
Cognome: Lindahl
Email: send email
Telefono: +4646222 01 78
Fax: 46462224250

SE (LUND) hostInstitution 2˙047˙000.00

 Organization address address: Paradisgatan 5c
city: LUND
postcode: 22100

contact info
Titolo: Prof.
Nome: Anne
Cognome: L'huillier Wahlström
Email: send email
Telefono: 46462227661
Fax: 46462224250

SE (LUND) hostInstitution 2˙047˙000.00


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

atomic    xuv    ionization    packets    experiments    pulses    rate    emitted    pulse    want    attosecond    we    electrons    coincidence    pump    wave    created    how    science    intense    probe    repetition    time    tunable    electron   

 Obiettivo del progetto (Objective)

'The field of attosecond science is now entering the second decade of its existence, with good prospects for breakthroughs in a number of areas. We want to take the next step in this development: from mastering the generation and control of attosecond pulses to breaking new marks starting with the simplest systems, atoms. The aim of the present application is to advance the emerging new research field “Ultrafast Atomic Physics”, where one- or two-electron wave packets are created by absorption of attosecond pulse(s) and analyzed or controlled by another short pulse. Our project can be divided into three parts:

1. Interferometric measurements using tunable attosecond pulses How long time does it take for an electron to escape its potential? We will measure photoemission time delays for several atomic systems, using a tunable attosecond pulse source. This type of measurements will be extended to multiple ionization and excitation processes, using coincidence measurements to disentangle the different channels and infrared ionization for analysis.

2. XUV pump/XUV probe experiments using intense attosecond pulses How long does it take for an atom to become an ion once a hole has been created? Using intense attosecond pulses and the possibility to do XUV pump/ XUV probe experiments, we will study the transition between nonsequential double ionization, where the photons are absorbed simultaneously and all electrons emitted at the same time and sequential ionization where electrons are emitted one at a time.

3. 'Complete' attosecond experiments using high-repetition rate attosecond pulses We foresee a paradigm shift in attosecond science with the new high repetition rate systems based on optical parametric chirped pulse amplification which are coming to age. We want to combine coincidence measurement with angular detection, allowing us to characterize (two-particle) electronic wave packets both in time and in momentum and to study their quantum-mechanical properties.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CIF (2010)

Complex Interfacial Flows: From the Nano- to the Macro-Scale

Read More  

EDIP (2009)

Evolution of Development In Plants

Read More  


Brain Microcirculation : Numerical simulation for inter-species translation with applications in human health

Read More