ANTI-ANGIOGENIC DRUG

Multifunctional Polymeric Nanomicelles Combat Tumor Evasion in Antiangiogenic Cancer Therapy

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben-Yehuda
Email: send email
Telefono: +972 2 6586676
Fax: +972 72 2447007

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2018-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben-Yehuda
Email: send email
Telefono: +972 2 6586676
Fax: +972 72 2447007

IL (JERUSALEM) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

polymer    necrotic    drugs    tissue    drug    positive    angiogenesis    small    clinical    tumor    resistance    blood    molecule    antiangiogenic    signals    therapy   

 Obiettivo del progetto (Objective)

'Angiogenesis a major contributor to tumor development and metastases. Formation of new blood vessels supports tumor proliferation and disease progression and is often associated with poor clinical prognosis. Recent advances targeting angiogenesis and inhibition of tumor neovascularization has led to the approval of several new antiangiogenic drugs for clinical use in many types of cancers. Yet despite promising potential, the efficacy of these treatments has been relatively limited. Additionally, as with chemotherapeutics, over time these therapies are associated with tumor resistance and escape. Antiangiogenic therapy (target-specific or broad spectrum) aims to eradicate the tumor by damaging its blood supply; as a result tumor tissue becomes hypoxic and, consequently, necrotic. By current clinical measure, this tissue death is considered a positive outcome; however it is recently discovered that the necrotic tissue in turn releases signals contributing to inflammation and angiogenesis, eventually initiating aggressive revascularization, overriding the foreseen beneficial effects of the antiangiogenic drug. For this grant, we propose to design a novel drug-delivery system based on multifunctional polymer nanomicelles which combine two small molecule drugs: one a potent antiangiogenic drug, and second which is an antagonist of these necrotic signals, combating the feed-back loop which can undermine the positive effects of therapy. Using this innovative approach, we intend to significantly improve cancer treatment by minimizing resistance to antiangiogenic drugs. This technology is based on our previous development of the PEG-PLA polymer conjugate of a small molecule angiostatic compound, TNP-470, which form nanomicelle with improved pharmacological properties compared with the free drug. By combining a second drug with distinct mechanism of action we will provide an important, clinically relevant tool, and a future platform for antiangiogenic or other drugs.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NMEN-PBP (2009)

Functional organisation of penicillin binding proteins of Neisseria meningitidis

Read More  

NANOPORATION (2009)

Ultrasound activiated nanoencapsulated targetted drug delivery and tumous cell poration

Read More  

NANOTRAFFIC (2012)

Do small things lead to big problems? Mechanism of uptake and toxicity of metal nanoparticles in intestinal cells

Read More