SITRANSPORTER

Identification of molecular transporters that facilitate siRNA skin delivery

 Coordinatore UNIVERSITY OF DUNDEE 

 Organization address address: Nethergate
city: DUNDEE
postcode: DD1 4HN

contact info
Titolo: Mrs.
Nome: Zoe
Cognome: Kidd
Email: send email
Telefono: +44 1382384047

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 299˙558 €
 EC contributo 299˙558 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF DUNDEE

 Organization address address: Nethergate
city: DUNDEE
postcode: DD1 4HN

contact info
Titolo: Mrs.
Nome: Zoe
Cognome: Kidd
Email: send email
Telefono: +44 1382384047

UK (DUNDEE) coordinator 299˙558.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sirna    expression    clinic    efficient    gene    disorders    translation    reagents    conjugates    self    reporter    corneum    amine    epidermis    small    skin    sirnas    treatment    transfection    stratum    ability    cells    genetic    vitro   

 Obiettivo del progetto (Objective)

'The ability to target gene expression with nucleic acid-based therapeutics including small interfering RNAs (siRNAs) has opened up novel treatment opportunities for genetic skin disorders. Although siRNAs have exquisite selectivity and potency, translation to the clinic has been hampered due to the lack of efficient delivery systems that allow penetration through the outer barrier of the skin, the stratum corneum, and uptake by the live cells of the dermis and epidermis. A number of physical and chemical methods have been used to deliver siRNA across the stratum corneum into the epidermis. Once in the tissue, the target cells must internalize the siRNA. “Self-delivery” siRNAs have been identified that obviate the need for transfection reagents and are widely used in vitro. However, cellular uptake of the most effective self-delivery siRNAs is still inefficient compared to siRNA complexed with transfection reagents. Other functionalities may enhance delivery, but screening large numbers of modifications for self-delivery properties is hindered by cumbersome RNA synthesis methods. The long-term goal of this project is to develop novel siRNA conjugates that will facilitate optimal delivery to the affected tissues and cells for treatment of genetic disorders, particularly those of the skin. Here, it is proposed to develop an efficient method for conjugating siRNAs to a library of small molecules. The proposed strategy takes advantage of standard thiol and amine chemistries, producing a stable, covalent crosslink between the siRNA and any molecule containing a primary amine. These conjugates will initially be screened using a keratinocyte cell line expressing a reporter gene. In preparation for translation to the clinic, lead inhibitors will be fully characterized and tested for their ability to specifically inhibit reporter and endogenous gene expression in vitro and in vivo.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TRAKIMI (2015)

Travelling knowledge in medieval Islam: the Ash‘arites of al-Andalus and North Africa

Read More  

PARIM (2011)

"Polygermane Block Copolymers: Synthesis, Self-Assembly, and Applications in Nanotechnology"

Read More  

P-USHER (2011)

Structural analysis of the newly described hybrid secretion system of the pathogen Pseudomonas aeruginosa involving the outer membrane transporter CupB3 (‘P-usher’) and the adhesin CupB5

Read More