DEX

DNA Excitonics

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Prof.
Nome: R. J.
Cognome: Dwayne Miller
Email: send email
Telefono: +49 4089986200

 Nazionalità Coordinatore Germany [DE]
 Totale costo 161˙968 €
 EC contributo 161˙968 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Prof.
Nome: R. J.
Cognome: Dwayne Miller
Email: send email
Telefono: +49 4089986200

DE (MUENCHEN) coordinator 161˙968.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

theory    energy    nature    helix    light    double    bases    damage    closely    charge    experiments    sequence    dna    transport    radiation    exploited    spaced    base    separation   

 Obiettivo del progetto (Objective)

'The bases that make up the DNA double helix absorb ultraviolet light. There is much debate about the way nature avoids radiation damage to DNA. Furthermore, the unique characteristic of an organized sequence of closely spaced base pairs, exploited in living organisms, can be used to tune the electronic structure for photo physical functionality in future applications. To understand the special properties of the DNA double helix that make it possible to avoid radiation damage, and their use in applications, new state of the art laser experiments are in progress in the host group. However, although these experiments give a wealth of information about the properties of DNA, due to their highly complex nature their interpretation is far from straightforward. New theory is necessary to interpret these measurements. This project aims at the establishment of a unique collaboration between theory and experiment to understand how the closely spaced DNA bases control its optical properties, and how manipulation of the base sequence can be exploited for applications. In particular, the transport of energy through the helix after absorption of light and the possibility of charge separation will be clarified. To this end, a new theory will be developed in close collaboration with experimental work. The theory will find direct application to DNA, but will also be applicable to related systems such as conjugated polymers and biological light-harvesting complexes, where both energy transport and charge separation are directly relevant for the function.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EPIKH (2009)

Exchange Programme to advance e-Infrastructure Know-How

Read More  

CANOMICS (2010)

Multicentre discovery of breast cancer biomarkers

Read More  

MONOTRANS (2009)

Statistical Machine Translation Using Monolingual Corpora

Read More