COMPENZ

Quantum Chemistry of Enzymatic Nucleophilic Substitution: Untangling the Role of Metal Ions and Protein Environment in Biochemical Nucleophilic Substitution at Phosphorus and Sulfur

 Coordinatore STICHTING VU-VUMC 

 Organization address address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Titolo: Dr.
Nome: Yvonne
Cognome: Kops
Email: send email
Telefono: +31 20 59 87500

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 183˙469 €
 EC contributo 183˙469 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-11-01   -   2016-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    STICHTING VU-VUMC

 Organization address address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Titolo: Dr.
Nome: Yvonne
Cognome: Kops
Email: send email
Telefono: +31 20 59 87500

NL (AMSTERDAM) coordinator 183˙469.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

enzymatic    nature    sulfur    marginally    reaction    protein    involvement    metal    chemistry    chemical    studying    oxidation    ubiquitous    environment    reactions    offer    redox    energy    training    molecular    theory    tackle    mo    ions   

 Obiettivo del progetto (Objective)

'Enzymatic nucleophilic substitution reactions are ubiquitous as key steps in biochemical processes of living cells. Despite their importance, they are poorly understood, in particular regarding the exact mechanism and involvement of the protein environment and the role and mechanistic involvement of metal ions. Through interpretative methods from chemical reactivity theory, I will tackle the missing links in this field of molecular life sciences. This project thus goes beyond transition state calculations, which are today’s state of the art in computational enzymology, by addressing the question why. The project’s goal is to build a new research protocol to give insight in enzymatic reactions. This is original and innovative, and will as such contribute to Europe’s excellence. Through the integrated scientific and complementary skills training, it will offer much to my career development. The role of metal ions and the protein environment in triphosphate hydrolysis and sulfur oxidation reactions, which are abundant and ubiquitous enzymatic reactions involved in e.g. signal and energy transduction will be untangled via quantitative molecular orbital (MO)-theory. The MO-model and its associated energy-decomposition approach, for which the host will offer a training, can make trends in reaction barriers transparent and is the current state of the art in explanatory chemistry. This approach is only marginally used to tackle the chemistry of enzymatic reactions and gives the project its originality and pioneering nature. Further, by studying the nature of the reaction barrier of sulfur oxidation reactions, I will pioneer the field of theoretical redox protein sulfur chemistry. Sulfur redox biology is being studied extensively by biochemists, but only marginally by theoreticians. In conclusion, by studying representative proteins, this project translates fundamental chemical insights into biological relevance, giving the project its interdisciplinary nature.'

Altri progetti dello stesso programma (FP7-PEOPLE)

AEDNET (2014)

Anthrax Environmental Decontamination Network

Read More  

CONPRA (2013)

"Contributing the Preventive Archaeology: Innovativeness, Development and Presentation"

Read More  

IRBLLEIDA-IPP (2014)

IRBLLEIDA International Postdoctoral Programme

Read More