DYCOCOS

Dynamics of Confined Complex Suspensions

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Véronique
Cognome: Debisschop
Email: send email
Telefono: +33 1 69823264
Fax: +33 1 69823333

 Nazionalità Coordinatore France [FR]
 Totale costo 194˙046 €
 EC contributo 194˙046 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Véronique
Cognome: Debisschop
Email: send email
Telefono: +33 1 69823264
Fax: +33 1 69823333

FR (PARIS) coordinator 194˙046.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fluids    lc    crystals    colloidal    experiments    liquid    microfluidics    confining    particle    materials    flow    orientational    sedimentation    optofluidics    lcs    coupling    confined    soft    dynamics   

 Obiettivo del progetto (Objective)

'Soft condensed materials are ubiquitous in nature: from polymer melts to a human cell. These systems are characterized by complex order on mesoscale, a length scale a lot larger than the individual building blocks (e.g. atoms or molecules) but smaller than can be seen by naked eye. Examples of complex soft materials are provided by colloidal systems - 0.1-10 micron particles suspended in a homogeneous fluid or liquid crystals (LCs) which can have order (orientational/translation) but can flow like fluids. In anisotropic complex fluids the morphology of the phase is inherently connected to the dynamics (e.g. flow). Confinement effects also play a major role in technologically relevant configurations e.g. sedimentation or microfluidics.

The candidate proposes computational research of the sedimentation dynamics of confined colloidal solutions as well as the dynamics and optics of liquid crystals in microfluidics ('optofluidics'). Confining walls hinder the sedimentation dynamics, leading to decreased draining. Very recent experiments showed an increased sedimentation velocity of colloids when confined in cylindrical capillaries (Heitkam et al. PRL (2013)). This serves as a natural starting point for the research. Subsequently, the studies will be expanded to include various confining geometries and interactions (particle-particle and particle-wall). Due to the coupling between the LC orientation and imposed flow, confining LCs in microfluidic channels allows optical manipulation ('optofluidics'). Proposed research of LC optofluidics will govern LCs with orientational (nematic) and combined orientational/translational (cholesteric) order.

The results can be expected to have significant technological relevance, although the primary aim is to provide fundamental physics insights of the coupling between flow and order in confined complex fluids. This will be achieved by employing state-of-the-art simulations (lattice Boltzmann) in close contact with experiments.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TEACH-IN (2014)

"Teacher leadership for school improvement: community capacity building towards effective leadership, educational success and social cohesion"

Read More  

THERAVAC (2011)

Development of a therapeutic HPV vaccine via target epitope identification by mass spectrometry

Read More  

VIRUEVO (2010)

The role of protozoa and phage enemies as driving force for bacterial virulence

Read More