COMP-OPTOGEN

Computational optogenetics for the characterization and control of cortical activity

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

single    provides    opsins    theoretical    combining    silencing    cortical    excitatory    activation    inhibition    networks    tool    excitation    circuits    co    neurons    underlying    neural    optogenetics    balance    models    activated    experimental    model   

 Obiettivo del progetto (Objective)

'Optogenetics provides a powerful tool with which to not only observe but also manipulate neuronal activity, due to the possibility it provides to spatially and temporally target subpopulations of neurons. Recently, the first reports have emerged of the co-expression of excitatory and silencing opsins within the same neuron population, providing the opportunity to control the balance of excitation and inhibition within neural circuits. However, this approach is currently limited by interactions between co-expressed opsins, which are suggested to be nonlinear. Correspondingly, this nonlinearity complicates the proposal of stimulation protocols for modulating neural activity. Thus although optogenetics progresses towards the use of co-activated opsins to modulate neural activity, the mechanisms underlying their interaction have not been studied. In this project, I propose to address the functional implications of this deficit by studying the co-activation of excitatory and silencing opsins from the level of single neurons, to their dual activation in networks. I will do this by combining two parallel approaches. Firstly, I will use experimental in vitro and in vivo models to study the effects of co-activated opsins in isolated neurons and networks respectively. Secondly, based on an underlying biophysical model of opsins, I will examine computer models of co-activated opsins in single cells and in a multiscale model of a cortical circuit. By combining findings from experimental and theoretical models, I will increase our understanding of the possibilities of co-activated opsins, whilst simultaneously providing suitable experimental and theoretical models with which to further explore the balance of excitation and inhibition in cortical networks. This research will be of great immediate benefit to optogenetics, and help define the future direction of this technique as an effective tool with which to study the role of excitation and inhibition within neural circuits.'

Altri progetti dello stesso programma (FP7-PEOPLE)

LUNG DCS UNFOLD (2011)

Involvement of the endoplasmic reticulum stress response in lung dendritic cell function and inflammatory lung diseases

Read More  

BRIGHT NIGHT 3 (2008)

Belgian Researcher's Initiatives To Heat That Night 3

Read More  

INC (2009)

Innate Neuronal Circuits

Read More