HOLOQOSMOS

Holographic Quantum Cosmology

 Coordinatore KATHOLIEKE UNIVERSITEIT LEUVEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 1˙995˙900 €
 EC contributo 1˙995˙900 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-08-01   -   2019-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: +32 16 320 944
Fax: +32 16 324 198

BE (LEUVEN) hostInstitution 1˙995˙900.00
2    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Prof.
Nome: Thomas
Cognome: Hertog
Email: send email
Telefono: +32 16327237
Fax: +32 16327986

BE (LEUVEN) hostInstitution 1˙995˙900.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

holographic    inflation    description    origin    cosmology    models    theory    universe    physics    quantum    boundary    energy    cosmic    evolution   

 Obiettivo del progetto (Objective)

'The current theory of cosmic inflation is largely based on classical physics. This undermines its predictivity in a world that is fundamentally quantum mechanical. With this project we will develop a novel approach towards a quantum theory of inflation. We will do this by introducing holographic techniques in cosmology. The notion of holography is the most profound conceptual breakthrough that has emerged form fundamental high-energy physics in recent years. It postulates that (quantum) gravitational systems such as the universe as a whole have a precise `holographic’ description in terms of quantum field theories defined on their boundary. Our aim is to develop a holographic framework for quantum cosmology. We will then apply this to three areas of theoretical cosmology where a quantum approach is of critical importance. First, we will put forward a holographic description of inflation that clarifies its microphysical origin and is rigorously predictive. Using this we will derive the distinct observational signatures of novel, truly holographic models of the early universe where inflation has no description in terms of classical cosmic evolution. Second, we will apply holographic cosmology to improve our understanding of eternal inflation. This is a phase deep into inflation where quantum effects dominate the evolution and affect the universe’s global structure. Finally we will work towards generalizing our holographic models of the primordial universe to include the radiation, matter and vacuum eras. The resulting unification of cosmic history in terms of a single holographic boundary theory may lead to intriguing predictions of correlations between early and late time observables, tying together the universe’s origin with its ultimate fate. Our project has the potential to revolutionize our perspective on cosmology and to further deepen the fruitful interaction between cosmology and high-energy physics.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FIRSTLIGHT (2010)

Unveiling first light from the infant Universe

Read More  

ARFMEMBRANESENSORS (2011)

Membrane sensors in the Arf orbit

Read More  

SEROTONINANDDISEASE (2012)

Dissecting the gene regulatory mechanisms that generate serotonergic neurons and their link to mental disorders

Read More