STRUCLIM

Limits of discrete structures

 Coordinatore MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Hungary [HU]
 Totale costo 1˙175˙200 €
 EC contributo 1˙175˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET

 Organization address address: REALTANODA STREET 13-15
city: Budapest
postcode: 1053

contact info
Titolo: Dr.
Nome: Balazs
Cognome: Szegedy
Email: send email
Telefono: +36 1 4838300
Fax: +36 1 4838333

HU (Budapest) hostInstitution 1˙175˙200.00
2    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET

 Organization address address: REALTANODA STREET 13-15
city: Budapest
postcode: 1053

contact info
Titolo: Prof.
Nome: Peter Pal
Cognome: Palfy
Email: send email
Telefono: +36 1 4838308
Fax: +36 1 4838333

HU (Budapest) hostInstitution 1˙175˙200.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

combinatorics    structures    theory    subjects    extremal    ergodic   

 Obiettivo del progetto (Objective)

'Built on decades of deep research in ergodic theory, Szemeredi's regularity theory and statistical physics, a new subject is emerging whose goal is to study convergence and limits of various structures. The main idea is to regard very large structures in combinatorics and algebra as approximations of infinite analytic objects. This viewpoint brings new tools from analysis and topology into these subjects. The success of this branch of mathematics has already been demonstrated through numerous applications in computer science, extremal combinatorics, probability theory and group theory. The present research plan addresses a number of open problems in additive combinatorics, ergodic theory, higher order Fourier analysis, extremal combinatorics and random graph theory. These subjects are all interrelated through the limit approach.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

EM (2013)

Elevated Minds. The Sublime in the Public Arts in 17th-century Paris and Amsterdam

Read More  

CRITICAL (2014)

Behaviour near criticality

Read More  

CRYSTENG-MOF-MMM (2013)

Crystal Engineering of Metal Organic Frameworks for application in Mixed Matrix Membranes

Read More