POPFULL

System analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting

 Coordinatore UNIVERSITEIT ANTWERPEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-03-01   -   2014-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN

 Organization address address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000

contact info
Titolo: Ms.
Nome: Anne
Cognome: Adams
Email: send email
Telefono: -2652999
Fax: -2652982

BE (ANTWERPEN) hostInstitution 2˙500˙000.00
2    UNIVERSITEIT ANTWERPEN

 Organization address address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000

contact info
Titolo: Prof.
Nome: Reinhart J.M.
Cognome: Ceulemans
Email: send email
Telefono: 32-3-8202256
Fax: 32-3-8202271

BE (ANTWERPEN) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

accounting    fossil    greenhouse    energy    assessments    voc    full    gases    global    fast    warming    mitigation    bio    plantation    src    gas    rotation    cycle    strategies    emissions    fluxes    net    efficiency    biomass    experimental    lca    crops    life   

 Obiettivo del progetto (Objective)

'One of the strategies for mitigation of anthropogenic greenhouse gas emissions that is receiving a lot of attention in this post-Kyoto era, is the use of bio-energy as a replacement for fossil fuels. Among the different alternatives of bio-energy production the use of biomass crops such as fast-growing woody crops under short rotation coppice (SRC) regimes - is probably the most suited, in particular in the EU. Two issues need to be addressed before the efficacy of bio-energy for carbon mitigation can be conclusively assessed, i.e. (i) a full life cycle analysis (LCA) of the global warming contribution of SRC, and (ii) and an assessment of the energy efficiency of the system. The objectives of this project are: (i) to make a full LCA balance of the most important greenhouse gases (CO2, CH4, N2O, H2O and O3) and of the volatile organic compounds (VOC s), and (ii) to make a full energy accounting of a SRC plantation with fast-growing trees. The project will involve both an experimental approach at a representative field site in Belgium and a modelling part. For the experimental approach a SRC of poplar (Populus) will be monitored during the course of 13 years, harvested and transformed into bio-energy. Eddy covariance techniques will be used to monitor net fluxes of all greenhouse gases and VOC's, in combination with common assessments of biomass pools (incl. soil) and fluxes. For the energy accounting we will use life cycle analysis and energy efficiency assessments over the entire life cycle of the SRC plantation until the production of electricity and heat. A significant process based modeling component will integrate the collected knowledge on the greenhouse gas and energy balances toward predictions and simulations of the net reduction of fossil greenhouse gas emissions (avoided emissions) of SRC over different rotation cycles, global warming scenarios, and management strategies.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ARMOS (2011)

Advanced multifunctional Reactors for green Mobility and Solar fuels

Read More  

TERRA (2009)

"Telomeric Repeat Containing RNA: Biogenesis, Composition and Function"

Read More  

SYSCHEMBIOL (2011)

Systems Chemical Biology - Chemical Biological Perturbation and Dissection of Dynamic Biological Systems

Read More