NANOPHOTONIC DEVICES

Physics and applications of nanocrystal - polymer nanophotonic devices

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Dr.
Nome: Eran
Cognome: Vardi
Email: send email
Telefono: -6585706
Fax: -6512235

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-01-01   -   2011-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Dr.
Nome: Eran
Cognome: Vardi
Email: send email
Telefono: -6585706
Fax: -6512235

IL (JERUSALEM) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

beam    subwavelength    nonlinear    active    dots    nanophotonic    light    emitting    metallic    platforms    patterned    resonant    structures    matrices    optical    nanocrystal    quantum    polymer    probe    core    composite    si    fabrication    sub    micron   

 Obiettivo del progetto (Objective)

'We propose the fabrication and optical study of new nanophotonic devices based on composite, highly transparent polymer matrices that incorporate near infrared, light emitting semiconductor nanocrystal quantum dots, on different sub-micron patterned surfaces. The devices will combine the atomic-like optical functionality of the nanocrystal quantum dots and the fabrication flexibility of the polymer host with state-of-the-art Si based and Metallic based nanophotonic platforms, such as sub-micron size Si core and air core waveguides and resonators, and sub-wavelength resonant metallic gratings. The proposed objectives are: (a) Understanding the physical mechanisms that determines the carrier dynamics in those nanocrystal quantum dots and in the nanocrystal-polymer composite. (b) A design, fabrication, and study of new active (light emitting) devices and passive nonlinear devices that are based on such hybrid nanocrystal-polymer matrices on Si based planar nano-patterned waveguide platforms. (c) Fabrication and study of nanocrystal-polymer composites incorporated into subwavelength metallic structures, to understand the coupling of the different types of resonant plasmon modes of the subwavelength metallic structure to the nanocrystal quantum dots, probe the enhanced local fields effect on the linear and nonlinear optical properties of the active composite, and identify the potential of such structures as new photonic devices. The experimental methods will include continuous wave as well as time resolved optical spectroscopy, and high-power ultrafast two beam and three beam pump-probe measurements.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NEUROMODEL (2008)

Initial Training Network on therapeutic approaches and predictive models for neurodegenerative diseases

Read More  

N-LINK (2012)

"Normannitas: Landscape, Identity and Norman Kingdoms."

Read More  

DBR (2008)

Diagram Based Reasoning

Read More