SCG

Systematic Chemical Genetic Interrogation of Biological Networks

 Coordinatore THE UNIVERSITY OF EDINBURGH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙400˙000 €
 EC contributo 2˙400˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-08-01   -   2014-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH

 Organization address address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL

contact info
Titolo: Ms.
Nome: Angela
Cognome: Noble
Email: send email
Telefono: +44 131 650 9024
Fax: +44 131 650 9023

UK (EDINBURGH) hostInstitution 2˙400˙000.00
2    THE UNIVERSITY OF EDINBURGH

 Organization address address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL

contact info
Titolo: Prof.
Nome: Michael David
Cognome: Tyers
Email: send email
Telefono: -7764
Fax: -6116

UK (EDINBURGH) hostInstitution 2˙400˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

function    cell    gene    discovery    chemical    network    therapeutic    magic    interactions    molecule    yeast    biological    drug    genetic    small    predict    functional    manipulate    networks    cgm    combinations    selectively    genome    species   

 Obiettivo del progetto (Objective)

'Recent genome-scale studies have revealed the massive redundancies and functional interconnectivities encoded by the genome. For example, the budding yeast Saccharomyces cerevisiae is predicted to harbor 200,000 synthetic lethal interactions. This genetic density has profound implications for both understanding the architecture of living systems and drug discovery. In particular, the dense connections of biological networks mandate a multi-node strategy to selectively manipulate any given biological response, whether it be to probe system level properties or for therapeutic intervention in human disease. By analogy to Ehrlich s magic bullet concept, we term this approach the magic shotgun . We propose to systematically identify chemical-genetic interactions that selectively disrupt any specific mutant genotype and chemical-chemical interactions that selectively kill pathogenic species. Our five main objectives are: (i) construct a comprehensive Chemical Genetic Matrix (CGM) of small molecule-gene interactions in order to predict chemical synergies and manipulate network function in a species-specific manner; (ii) elaborate the CGM with a set of ~5,000 yeast bioactive molecules derived from high throughput/high content screens; (iii) identify small molecule combinations that modulate stem cell and cancer cell renewal and differentiation; (iv) define compound mechanisms of action by functional genomics; (v) integrate chemical-genetic, genetic and protein interaction datasets to predict gene function, small molecule targets and network properties. This research will cross-connect genetic pathways through chemical space, identify species-specific combinations of agents as therapeutic leads and provide a repository of small molecule probes for cell biological and systems-level analysis. The principles developed through the course of this work will raise our understanding of biological networks and help establish a new approach to drug discovery.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BIMPC (2013)

Biologically-Inspired Massively-Parallel Computation

Read More  

ANOREP (2011)

Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications

Read More  

IMPACT (2015)

imPACT – Privacy, Accountability, Compliance, and Trust in Tomorrow’s Internet

Read More