PIOS

Photonic Integration on Silicon Germanium

 Coordinatore Bilkent Üniversitesi 

 Organization address address: ESKISEHIR YOLU 8 KM
city: ANKARA
postcode: TR-06800

contact info
Titolo: Prof.
Nome: Ayhan
Cognome: Altintas
Email: send email
Telefono: +90 (312) 290 1229
Fax: +90 (312) 266 4192

 Nazionalità Coordinatore Turkey [TR]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IRG-2008
 Funding Scheme MC-IRG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-04-01   -   2013-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Nome Ente NON disponibile

 Organization address address: ESKISEHIR YOLU 8 KM
city: ANKARA
postcode: TR-06800

contact info
Titolo: Prof.
Nome: Ayhan
Cognome: Altintas
Email: send email
Telefono: +90 (312) 290 1229
Fax: +90 (312) 266 4192

TR (ANKARA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

industry    crystalline    photonics    cells    visible    fabrication    commercial    material    decades    solar    epitaxy    related    ge    si    electronics    silicon    materials    ir    optoelectronics   

 Obiettivo del progetto (Objective)

'Many of the true breakthroughs in our technology are related to materials and the understanding of their properties. Emergence of new semiconductor materials systems, especially in crystalline form, strongly shapes future photonics and electronics. Today, among such new promising material systems are crystalline Silicon/Germanium (Si/Ge) epitaxy. In these material systems, both academia and industry in the USA and the Far East seem to be making significant progress. It is thus crucial for Europe to invest and strengthen research efforts in these areas.

Silicon is the most abundant element in the earth’s crust and dominates the microelectronics industry. Today Si based microelectronic technology sits on decades of processing experience and capital investment and offers advanced fabrication ability. In addition, silicon is widely used in optoelectronics in imaging (e.g., charged coupled devices―CCDs in the visible). Also, silicon finds wide-scale use in photovoltaics in optoelectronics. About 95% of the PV market is presently dominated by Si based solar cells. Although Si has been the dominant actor in electronics for a number of decades, only recently Si/Ge epitaxy has been possible to open up new opportunities both in electronics and photonics. For example, Si/Ge provides high mobility for high-speed transistors in electronics. Similarly, Si/Ge epitaxy allows for the fabrication of IR detector.

To date SOI waveguides, Si based visible sensors and receivers have been successfully developed. Si/Ge platform is, however, not limited only to these devices and related applications and commercial interest. In this project, we aim to address this gap in the device product line of Si/Ge including efficient Si/Ge based light emitters, modulators, sub-wavelength IR detectors and multi-junction solar cells and expand their technological applications and commercial use critical both for Europe and around the globe.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NANOTESTS (2012)

Fabrication and development of nanotoxicology-test bacterial arrays for the investigation of antibiotics against multi drug-resistant bacteria

Read More  

LGR6MAMMARYSC (2013)

The role of Lgr6 as a marker of progenitor cells and cancer-initiating cells in the mammary gland

Read More  

SUBICAT (2013)

Sustainable Biomass Conversions by Highly Efficient Catalytic Processes

Read More