MURF AND HYPERTROPHY

Regulation and function of the E3 ubiquitin ligases Muscle RING finger 1 and 3 in cardiac hypertrophy

 Coordinatore MAX-DELBRUCK-CENTRUM FUR MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT 

 Organization address address: ROBERT ROSSLE STRASSE 10
city: BERLIN
postcode: 13125

contact info
Titolo: Mr.
Nome: Andrea
Cognome: Winnefeld
Email: send email
Telefono: 493094000000
Fax: 493094000000

 Nazionalità Coordinatore Germany [DE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IRG-2008
 Funding Scheme MC-IRG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2013-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX-DELBRUCK-CENTRUM FUR MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT

 Organization address address: ROBERT ROSSLE STRASSE 10
city: BERLIN
postcode: 13125

contact info
Titolo: Mr.
Nome: Andrea
Cognome: Winnefeld
Email: send email
Telefono: 493094000000
Fax: 493094000000

DE (BERLIN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hypertrophic    proteins    ubiquitin    muscle    cardiac    protein    degradation    residue    ring    mhc    expression    ligase    finger    transition    binding    hypertrophy    murf    function    activated    heart    transcription   

 Obiettivo del progetto (Objective)

'Heart failure caused by cardiac hypertrophy is a growing epidemic and remains the most frequent cause of hospitalization in elderly patients in the European Union. However, molecular mechanisms leading to cardiac hypertrophy and its transition into heart failure are poorly understood. Maintenance of cardiac structure and function requires a precise control of protein synthesis and degradation; abnormalities in these processes can give rise to myopathies. The protein degrading ubiquitin proteasome system (UPS) and its muscle specific key enzymes Muscle RING finger (MuRF) 1 and 3 are activated during cardiac hypertrophy and heart failure. MuRF1 and 3 are essential for the degradation of structural proteins, such as myosin heavy chain (MHC), leading to a decrease in cardiac function and heart failure. MuRF inhibitors are therefore expected to prevent transition of cardiac hypertrophy into failure. This proposal aims to investigate the function and regulation of MuRF1 and 3 during cardiac hypertrophy. More specifically, the major hypothesis that the function of MuRF1 is mainly mediated through its E3 ubiquitin ligase activity will be investigated. First, the specific cysteine residue within the RING-finger of MuRF1 responsible for its E3 ubiquitin ligase activity will be identified. This residue will than be germ-line mutated and the hypertrophic response of mice lacking MuRF1s E3 ligase activity will be analyzed following aortic banding. Secondly, the domains within MuRF proteins mediating MuRF binding to their MHC target proteins will be investigated. Additionally, we aim to analyze if hypertrophic stimuli can regulate binding between MuRF1 and 3 and their target proteins. Finally, a cDNA expression screen will be employed to discover novel transcription factors and signal transduction pathways regulating MuRF1 expression during hypertrophy. Furthermore, our preliminary data showed that the MuRF1 promoter can be activated through the muscle-specific transcription fac'

Altri progetti dello stesso programma (FP7-PEOPLE)

XYLANASES (2012)

Xylanases as models for understanding enzymatic catalysis

Read More  

SOUPINMYCRYSTAL (2013)

How can we improve our models of biological macromolecules to reproduce experimental crystallographic X-ray intensities better?

Read More  

EHNS-RAP (2014)

Energy Harvesting Networks - Resource Allocation and Performance Evaluation

Read More