CAMEGEST

Extremal Kaehler metrics and geometric stability

 Coordinatore UNIVERSITA DEGLI STUDI DI PARMA 

 Organization address address: VIA UNIVERSITA 12
city: PARMA
postcode: 43100

contact info
Titolo: Prof.
Nome: Claudio
Cognome: Arezzo
Email: send email
Telefono: +39 0521 906949
Fax: +39 0521 906950

 Nazionalità Coordinatore Italy [IT]
 Totale costo 228˙804 €
 EC contributo 228˙804 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-09-15   -   2013-09-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI PARMA

 Organization address address: VIA UNIVERSITA 12
city: PARMA
postcode: 43100

contact info
Titolo: Prof.
Nome: Claudio
Cognome: Arezzo
Email: send email
Telefono: +39 0521 906949
Fax: +39 0521 906950

IT (PARMA) coordinator 228˙804.70

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

prof    curvature       arezzo    problem    polarized    nave    flow    kaehler    constant    tian    generally    scalar    la    manifolds    stability    metrics    extremal    university    calabi    existence   

 Obiettivo del progetto (Objective)

'The problem of finding canonical Kaehler metrics on compact manifolds is central in Kaehler geometry. Since the pioneering work of Calabi, the existence problem for Kaehler-Einstein (and more generally constant scalar curvature, or even extremal Kaehler) metrics has attracted considerable attention. In this circle of ideas the most fascinating problem is represented by the so-called Yau-Tian-Donaldson conjecture, which predict the equivalence between the K-polystability of a polarized manifold and the existence of a constant scalar curvature (or more generally extremal) Kaehler metric in the polarization class. In this vein we propose the following three main research objectives: first, find an algebraic criterion for K-stability of polarized manifolds; second, study the effect of symplectic reduction on relative K-stability; third study the Calabi flow (in particular on toric manifolds) adapting the La Nave-Tian and Arezzo-La Nave approach to the Kahhler-Ricci flow. We propose to develop the research at Princeton University, under the superfision of prof. G. Tian, and Parma University, under the supervision of prof. C. Arezzo.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NOVALIS (2011)

A NOvel Architecture for a photonics LIquid State machine

Read More  

WILISCME (2011)

The relationship between white light and in situ observations of coronal mass ejections

Read More  

CFILP (2011)

Characterization of factors involved in proliferation of Bacillus subtilis L-forms

Read More