MOSAIC

Patterning the surface of monolayer-protected nanoparticles to obtain intelligent nanodevices

 Coordinatore UNIVERSITA DEGLI STUDI DI PADOVA 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Italy [IT]
 Totale costo 1˙499˙000 €
 EC contributo 1˙499˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-12-01   -   2015-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ALMA MATER STUDIORUM-UNIVERSITA DI BOLOGNA

 Organization address address: Via Zamboni 33
city: BOLOGNA
postcode: 40126

contact info
Titolo: Prof.
Nome: Andrea
Cognome: Bottoni
Email: send email
Telefono: +39 051 2099477
Fax: +39 051 2099456

IT (BOLOGNA) beneficiary 300˙000.00
2    UNIVERSITA DEGLI STUDI DI PADOVA

 Organization address address: VIA 8 FEBBRAIO 2
city: PADOVA
postcode: 35122

contact info
Titolo: Dr.
Nome: Fabrizio
Cognome: Mancin
Email: send email
Telefono: +39 0498275666
Fax: +39 0498275239

IT (PADOVA) hostInstitution 1˙199˙000.00
3    UNIVERSITA DEGLI STUDI DI PADOVA

 Organization address address: VIA 8 FEBBRAIO 2
city: PADOVA
postcode: 35122

contact info
Titolo: Prof.
Nome: Paolo Maria
Cognome: Scrimin
Email: send email
Telefono: +39 049 8275256
Fax: +39 049 8275050

IT (PADOVA) hostInstitution 1˙199˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

then    sensing    structures    monolayers    simple    obtain    organization    function    ability    coating    nanoparticles    blocks    molecular    gain    groups    chemical    functional    building   

 Obiettivo del progetto (Objective)

'While chemical science is still striving in the search for such molecular machinery, real and perfectly working molecular machines have been developed millions of years ago by Nature. When biological systems are considered, one striking feature that emerges is their intrinsic functional simplicity, since only a few building blocks are used to build complex structures. Apparently, what matters is not chemical complexity but the ability to precisely control the spatial arrangement and organization. Functional nanoparticles offer an unmatched opportunity to build complex structures with simple building blocks and relatively simple manipulations. The main goal of the Mosaic project is to gain the ability to hierarchically control the self-assembling of metal nanoparticles coating monolayers and take advantage from such ability to obtain complex function from the materials realized. This objective will require reaching a complete understanding of the structure and dynamic of nanoparticles coating monolayers developing new tools, mainly based on NMR spectroscopy, for their investigation. Then, we plan to learn how to use supramolecular interactions to control the monolayer organization and to gain, in this way, the ability to program functional groups patterns on the surface of the particles. In this way, it will possible to achieve a degree of organization comparable to that of biologic systems, such as enzymes or membranes. This organization of functional groups will be then used to obtain highly sophisticated function by these nanosystems, such as recognition, sensing, in particular NIR sensing, catalysis and transport.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NANO@ENERGY (2011)

Novel Design of Nanostructures for Renewable Energy: Fundamental Questions and Advanced Applications

Read More  

DISCONEX (2013)

The Discursive Construction of Academic Excellence. Classifying SSH Researchers Through Text-Processing Practices

Read More  

DENOVO (2012)

Detection and interpretation of de novo mutations and structural genomic variations in mental retardation

Read More