SUPERSOLDYNAF

Quantum states in ultracold fermionic gases in optical lattices: Supersolid and dynamic antiferromagnetic states

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Regina
Cognome: Diermann
Email: send email
Telefono: +49 711 689 1244
Fax: +49 0711 689 1209

 Nazionalità Coordinatore Germany [DE]
 Totale costo 217˙477 €
 EC contributo 217˙477 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IOF
 Funding Scheme MC-IOF
 Anno di inizio 0
 Periodo (anno-mese-giorno) 0000-00-00   -   0000-00-00

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Regina
Cognome: Diermann
Email: send email
Telefono: +49 711 689 1244
Fax: +49 0711 689 1209

DE (MUENCHEN) coordinator 217˙477.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

model    instability    fermions    optical    feshbach    stability    hubbard    gas    supersolid    lattice    resonance    which    situation    years    equilibrium    physics    behavior    theoretically    ultracold    af    models    quantum   

 Obiettivo del progetto (Objective)

'In recent years the fields of condensed matter physics and ultracold atomic gas physics have developed a fruitful interplay. The former has a long history of describing quantum states of matter based on simplified models, such as the Hubbard model, whilst the latter now manages to simulate these models and generate exciting quantum states. The twofold objective of the research project is to better understand the stability of the supersolid quantum state and the non-adiabatic dynamic generation of antiferromagnetic (AF) quantum states. The supersolid state of matter, a peculiar state with simultaneous crystalline order and superfluid properties, has been proposed to be realizable in a gas of attractive fermions confined to an optical lattice. The research project will theoretically model such a state and analyze its stability. This will be achieved by real space dynamical mean field calculations utilizing the numerical renormalization group as an impurity solver. The second part deals with a correlated fermionic system which by an interaction quench is driven into a situation where a strong AF instability is present. Using the Hubbard model, we will develop and apply non-equilibrium techniques to understand the resulting behavior. A realization of this non-equilibrium situation is possible for an ultracold gas of fermions in an optical lattice with commensurate filling, which is tuned suddenly to the strongly repulsive side of a Feshbach resonance. There, the AF instability competes with processes of molecule formation, which can also occur on this side of the Feshbach resonance. By taking into account both processes we will investigate theoretically the time-dependent response of the system and predict its dominant behavior. Current experiments are performed in regimes very close to the situations described here. The expected experimental realizations within the next years make it a timely and highly relevant research project.'

Altri progetti dello stesso programma (FP7-PEOPLE)

RAD-NANO-BIOMOL (2008)

Irradiation of model biomolecular nano-systems

Read More  

PATHSEC-BCA-BM (2010)

Pathway-based Secretomes in Breast Cancer Biomarker Discovery

Read More  

NEQUFLUX (2014)

Nonequilibrium quantum fluctuations in superconducting devices

Read More