DOP-ECOS

Optimal Design and Operation of Microbial Ecosystems for Bioenergy Production and Waste Treatment

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

UK (LONDON) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

systematic    bioenergy    biomaterials    operation    dop    uncertainty    optimization    ecos    bacterial    microalgal    microbial    ecosystems    biomass    bioprocesses   

 Obiettivo del progetto (Objective)

'Many microbial ecosystems, as part of their normal activity, have the potential to provide services to society and improve environmental quality. Some can degrade contaminants that pollute water, air or soil. Others can transform waste materials into valuable renewable resources, including bioenergy, biomaterials and high-value products. This generic capability opens the possibility for combining several microbial ecosystems in integrated bioprocesses or biorefineries, where various types of bioenergy or biomaterials are produced and multiple sources of pollution are treated, all at the same time.

The focus in the DOP-ECOS project is on bioprocesses that couple a photobioreactor, where microalgae capture sunlight to produce new biomass and lipids, and an anaerobic digester, where bacteria convert biomass into biogas and recover nutrients. The general objective is twofold: (i) optimize the design, operation and control of integrated microalgal/bacterial processes; and (ii) develop the supporting methods and tools for their reliable analysis and optimization.

While experimental research and demonstration programs are carried out worldwide to identify suitable algae strains and expand algal biofuel production from a craft to a major industrial process, the DOP-ECOS project is the first of its kind to apply a systematic, model-based methodology in order to determine optimal design and operation strategies. The need to account for operational issues at an early design stage is particularly pressing for integrated microalgal/bacterial systems, where the operation is expected to have a profound influence on the process design, due to the intricacy of the biological and physical processes involved. Because of the large uncertainty and variability inherent to microbial ecosystems, optimization under uncertainty provides a systematic framework to design and operation these processes.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CHINFISI (2013)

China's Economic Relations with Western Europe during Cold War (1952-66)

Read More  

TIBETANMEDICA (2012)

Women Practitioners of Tibetan Medicine and the Modernisation of Health Care

Read More  

HYTECH (2013)

HYDRODYNAMIC TRANSPORT IN ECOLOGICALLY CRITICAL HETEROGENEOUS INTERFACES

Read More