Opendata, web and dolomites


Geometric problems in PDEs with applications to fluid mechanics

Total Cost €


EC-Contrib. €






 GEOFLUIDS project word cloud

Explore the words cloud of the GEOFLUIDS project. It provides you a very rough idea of what is the project "GEOFLUIDS" about.

vortex    fluid    back    geometric    nature    topological    conjecture    arnold    techniques    steady    questions    pdes    mechanics   

Project "GEOFLUIDS" data sheet

The following table provides information about the project.


Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙256˙375 €
 EC max contribution 1˙256˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme /ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-03-01   to  2020-02-29


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

There are many high-profile problems in PDEs that ultimately boil down to assertions of a strongly geometric or topological nature. One feature that makes these problems both very difficult and extremely appealing is that there is not a standard set of techniques that one can routinely resort to in order to attack them. Indeed, the very nature of these questions makes them strongly interdisciplinary, so successful approaches require finely tailored combinations of ideas and techniques coming from different branches of mathematics (analysis, geometry and topology), often interspersed with some physical intuition. In this project I aim at going significantly beyond the state of the art in a wide class of geometric questions in PDEs, with an emphasis on problems in fluid mechanics and encompassing long-standing questions that can be traced back to leading analysts and geometers such as Arnold, De Giorgi and Yau. The project is divided in three interrelated blocks, respectively devoted to the study of Beltrami fields in steady incompressible fluids, to geometric evolution problems and to global approximation theorems. Key to the proposal is a versatile new approach to a number of geometric problems in PDEs that I have pioneered and applied in several seemingly unrelated contexts. The power of this technique is laid bare by my recent proofs of a well-known conjecture on knotted vortex lines in topological fluid mechanics that was popularized by Arnold and Moffatt in the 1960s and of a long-standing conjecture on the existence of thin vortex tubes in steady solutions to the Euler equation that dates back to Lord Kelvin in 1875. The award of a Starting Grant will enable me to establish a top-level research group on these topics.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GEOFLUIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GEOFLUIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PARSe (2018)

Program Analysis and Reorganization, as a Service

Read More  

HETERO (2018)

What does it mean to be heterosexual?

Read More  


DRAIOCHT- A low-cost minimally invasive platform medical device for the treatment of disorders of the cardiovascular system.

Read More