Opendata, web and dolomites


Attosecond Gated Holography

Total Cost €


EC-Contrib. €






Project "ATTO-GRAM" data sheet

The following table provides information about the project.


Organization address
address: HERZL STREET 234
postcode: 7610001

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 2˙000˙000.00


 Project objective

Strong-field-driven electric currents in condensed-matter systems open new frontiers in manipulating electronic and optical properties on petahertz frequency scales. In this regime, new challenges arise as the role of the band structure and the quantum nature of ultrafast electron-hole dynamics have yet to be resolved. While petahertz spectroscopy and control of condensed-matter systems holds great potential, revealing the underlying attosecond (1 attosecond – 10(-18) second) dynamics of electrons in solids is still in its infancy. The proposed research aims at the development of a state-of-the-art attosecond metrology scheme that integrates the concept of holography with attosecond gating. Attosecond-gated holography will provide direct insight into the instantaneous evolution of the complex quantum wavefunctions in solid-state systems. This scheme will enable us to follow the electron-hole wavepacket evolution during ultrafast band structure deformation, probing a range of fundamental processes – from sub-cycle phase transitions to ultrafast dynamics in correlated systems. In ATTO-GRAM, we will establish attosecond-gated holography and then apply it to study field-induced transient band structures, resolve electron-hole dynamics during lattice deformation and reveal attosecond phenomena in strongly correlated systems. Integrating state-of-the-art experimental schemes, supported by advanced theoretical analysis, will lead to the discoveries of new phenomena previously deemed inaccessible. The impact of the proposed research reaches beyond attosecond metrology – opening new routes in the establishment of compact solid-state extreme ultraviolet sources, petahertz electronics and optically induced metamaterials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ATTO-GRAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ATTO-GRAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SkewPref (2019)

Skewness Preferences – Human attitudes toward rare, high-impact risks

Read More  

MuFLOART (2018)

Microbiological fluorescence observatory for antibiotic resistance tracking

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More