Opendata, web and dolomites

Eciwind SIGNED

Cost effective wind turbine of 40 kW of rated capacity

Total Cost €


EC-Contrib. €






Project "Eciwind" data sheet

The following table provides information about the project.


Organization address
address: PG/ EL CAMPILLO 3
postcode: 48500
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website
 Total cost 1˙867˙578 €
 EC max contribution 1˙307˙305 € (70%)
 Programme 1. H2020-EU.3.3. (SOCIETAL CHALLENGES - Secure, clean and efficient energy)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-2-2014
 Funding Scheme SME-2
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2018-11-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LANCOR 2000 S COOP ES (ABANTO BIZKAIA) coordinator 504˙218.00
2    ENAIR ENERGY SL ES (CASTALLA ALICANTE) participant 803˙087.00


 Project objective

The project arises from a joint venture between Enair Energy SL and Lancor 2000 S Coop to develop a Cost efficient Small Wind Turbine (SWT) of 40 kW rated capacity (ECIWIND®).Within the wind energy sector, the small wind power is growing: According to World Wind Energy Association the small wind power market is expected to increase massively, from 768 M€ in 2013 to 2517 M€ by 2020, at a CAGR of 22%.The main challenge of the small wind energy industry is to decrease its costs to push a socialisation of this renewable technology. Thus, this electricity generation will be more competitive in the energy market and independent of the subsidies. The European Commision highliths the importance of Small and Medium Enterprises (SMEs) as small energy producers and the need to empower them to take up this role. Several european SMEs such as farms (200-400 kWh/day) and small industry (200- 450 kWh/day). In the case that these end users are located in areas where annual average wind velocity is higher than 5 m/s, small wind turbines in the 10-50 kW capacity is the best option to cover their energy needs. The acquisition and commissioning costs of SWT in this capacity range rounds 4000 €/kWh and have annual maintenance average costs of 1500 €/year depending on the configuration, which makes unaffordable the investment without government subsidies. The price reduction on this capacity range can be approached through the elimination of costly parts of current technologies as the Gearbox, and the optimization of the cost/performance of the rest of components.Enair and Lancor have therefore identified a business opportunity for SWT technologies and have developed a first prototype of ECIWIND® at 10 kW scale (free-gearbox with pitch control and permanent magnet generator SWT) that requires 50% less maintenance and decrease the price to end user installed in 40%, which entails an investment payback period <6 years without any government subsidy.


List of deliverables.
ECIWIND certificate Websites, patent fillings, videos etc. 2019-07-23 15:24:01
P3 Upgrade Prototype Demonstrators, pilots, prototypes 2019-05-22 21:33:14
Communication Websites, patent fillings, videos etc. 2019-05-30 11:39:12

Take a look to the deliverables list in detail:  detailed list of Eciwind deliverables.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ECIWIND" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ECIWIND" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.;H2020-EU.2.3.1.)

SE-NBW (2015)

Demonstration of a self-erection system for wind turbine towers

Read More  

CargoMill (2015)

The CARGOMIL, an innovative self propelled all terrain vehicle for mobilising “where and when the biomass is”.

Read More  

VaporPV (2016)

Low cost PV cooling system for ground-mounted and rooftop systems - VaporPV

Read More