Opendata, web and dolomites

Ultroslag

A new integrated sustainable processing system for ‘metal from slag’ recovery with higher technical, economic, energy and environmental performance than existing recovery processes.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Ultroslag project word cloud

Explore the words cloud of the Ultroslag project. It provides you a very rough idea of what is the project "Ultroslag" about.

contains    burden    commercially    uniform    cut    metal    sand    smelting    separation    refining    miles    implosion    relatively    house    option    materials    97    un    glass    thermal    rapid    water    melt    idea    metals    society    recycle    combined       economies    size    vibration    sieving    impurities    million    add    courses    reducing    saved    alloyed    finest    ultimate    losing    civil    benefits    globally    economic    leaching    oxides    launch    metallic    strategic    saving    melting    ferrous    landfill    ultrasonic    forms    market    export    70    sharps    crushing    alloys    selectively    smelters    particles    techniques    endusers    separate    temp    energy    extremely    aggregate    recycling    slag    tpa    break    emissions    protective    components    originally    thro    heavy    huge    fine    accelerated    nfm    waste    innovative    carbon    recovery    mechanical    weight    crust    normal    recovered    re    engineering    fraction    expensive    free   

Project "Ultroslag" data sheet

The following table provides information about the project.

Coordinator
ULTROMEX LTD 

Organization address
address: MERSEY WHARF BUSINESS PARK DOCK ROAD SOUTH WIRRAL
city: MERSEYSIDE
postcode: CH62 4SF
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.ultromex.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.5. (SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2014
 Funding Scheme SME-1
 Starting year 2014
 Duration (year-month-day) from 2014-10-01   to  2015-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ULTROMEX LTD UK (MERSEYSIDE) coordinator 50˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Slag is a by-product of metal smelting, and ~3.5 million tpa are produced globally in refining Non Ferrous Metals (NFM) and making alloys. Slag contains impurities and forms a protective crust of non-metallic & metallic oxides, and contains significant ‘free’ & alloyed metal (from 10 to 70% by weight). While slag can be used as aggregate, there are increasing concerns over ‘leaching’ of heavy metals into water courses from using these materials in civil engineering. While some metal can be recovered by re-melting slag (at very high temp), this is extremely expensive with very high energy burden which often makes recovery un-economic, but necessary. Landfill of slag is increasingly not an option. Our idea is to use a relatively new technology called ‘implosion’ to selectively break down and separate non-metallic components of slag from metallic particles. This will be combined with ultrasonic vibration sieving for accelerated recovery of metal from the finest fraction. This novel technology was originally developed to recycle waste glass by reducing it to fine ‘sand’, with uniform size and no ‘sharps’ compared to normal crushing techniques. This technology has not been applied commercially to other materials. Benefits to partners, endusers & society could be: • Rapid recovery of more metal from slag at relatively low cost • Strategic control of metal recovered rather than losing control thro’ export to ‘low cost’ economies • Enable smelters to recycle slag in-house, increasing their ‘Value Add’ while reducing ‘recycle-miles’ • 97% energy saving thro’ low cost mechanical separation rather than very high temp. melt recycling • Huge cut in carbon emissions from thermal energy saved and ‘recycle-miles’ saved

The ultimate goal is to launch a new process in the market, through an innovative application of a relatively new technology to selectively break down the non-metallic components of slag from the metallic particles.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULTROSLAG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULTROSLAG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.5.;H2020-EU.2.3.1.)

PBTech (2016)

Combined Plasma Biotrickling system for treating industrial VOC emissions

Read More  

ProTreaT (2015)

FEASIBILITY ASSESSMENT OF THE GREEN “ProTreaT” TECHNOLOGY FOR PROTEIN-BASED, NATURAL REMOVAL OF HEAVY METALS FROM WATER AND WASTEWATER

Read More  

CleanCoat (2017)

Development of eco-friendly architectural coil coatings for clean buildings and pollution-free air

Read More