Opendata, web and dolomites

QuantumMagnonics SIGNED

Interfacing spin waves with superconducting quantum circuits for single magnon creation and detection

Total Cost €


EC-Contrib. €






 QuantumMagnonics project word cloud

Explore the words cloud of the QuantumMagnonics project. It provides you a very rough idea of what is the project "QuantumMagnonics" about.

transport    watts    amplitude    quantum    material    dynamic    cryogenic    resonator    flux    electron    beneath    environment    coupled    qubit    superconducting    nature    ontop    materials    methodology    magnonic    ultra    resolution    dynamics    complements    structured    scattering    films    spectroscopy    techniques    coherence    single    interface    frequency    connects    ideal    detection    creation    employs    explored    samples    measured    spin    electronics    deposited    thin    temperatures    mk    exploring    entangled    populated    atto    setups    ground    wave    neutron    monitoring    generation    stage    swapped    circuits    energy    experimentally    spectrum    made    resonators    magnet    waves    coupling    propagation    photon    magnetic    excitations    junctions    breaking    physics    intrinsic    action    inferred    magnetometry    horizons    object    determined    objects    enhanced    final    back    hybrid    power    detectors    extends    resolved    qubits    fundamental    noise    superpositioned    ferromagnets    magnon    limited    conventional   

Project "QuantumMagnonics" data sheet

The following table provides information about the project.


Organization address
postcode: G12 8QQ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 1˙996˙337 €
 EC max contribution 1˙996˙337 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2021-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 879˙337.00


 Project objective

The proposed project will experimentally interface ferromagnets with superconducting quantum circuits to study dynamics within the magnet. To this end, magnonic elements made up by thin, structured magnetic films will be strongly coupled to the qubit. Superconducting qubits are ideal detectors due to their quantum limited back-action on the measured object and energy resolution.

Spectroscopy and coherence measurements on the hybrid system will be made in order to address fundamental aspects such as spin wave generation, detection, coherence, or wave propagation down to mK temperatures and at ultra-low power (atto-watts). Amplitude and phase noise of spin wave resonators will be determined. At the final stage of the project, the quantum limited resolution of qubits will facilitate single magnon creation and detection. Quantum states are swapped between qubit and magnon, and superpositioned and entangled states will be explored. Monitoring the qubit response to its magnetic environment the low and high-frequency flux noise spectrum of spin waves will be inferred.

The research methodology employs junctions, resonators, and qubits as research objects and detectors. The samples will be characterized at cryogenic temperatures by transport, magnetometry, resonator and qubit setups. Magnetic materials will be deposited and structured beneath or ontop the superconducting quantum circuits.

Exploring spin wave dynamics in thin films by coupling to a superconducting qubit complements conventional measurement techniques based on photon, electron or neutron scattering methods, which require highly populated excitations. The project connects to and extends research objects of ground-breaking nature to open up new horizons for quantum, magnon and spin electronics. Magnetic material physics is enhanced by new research concepts such as quantum resolved spectroscopy and coherence measurements on intrinsic dynamic states.


year authors and title journal last update
List of publications.
2019 I.A. Golovchanskiy, N.N. Abramov, M. Pfirrmann, T. Piskor, J.N. Voss, D.S. Baranov, R.A. Hovhannisyan, V.S. Stolyarov, C. Dubs, A.A. Golubov, V.V. Ryazanov, A.V. Ustinov, M. Weides
Interplay of Magnetization Dynamics with a Microwave Waveguide at Cryogenic Temperatures
published pages: , ISSN: 2331-7019, DOI: 10.1103/PhysRevApplied.11.044076
Physical Review Applied 11/4 2019-11-06
2019 Juha Leppäkangas, Jan David Brehm, Ping Yang, Lingzhen Guo, Michael Marthaler, Alexey V. Ustinov, Martin Weides
Resonance inversion in a superconducting cavity coupled to artificial atoms and a microwave background
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.99.063804
Physical Review A 99/6 2019-11-06
2018 Juha Leppäkangas, Jochen Braumüller, Melanie Hauck, Jan-Michael Reiner, Iris Schwenk, Sebastian Zanker, Lukas Fritz, Alexey V. Ustinov, Martin Weides, Michael Marthaler
Quantum simulation of the spin-boson model with a microwave circuit
published pages: 19, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.97.052321
Physical Review A 97/5 2019-11-06
2016 Jochen Braumüller, Martin Sandberg, Michael R. Vissers, Andre Schneider, Steffen Schlör, Lukas Grünhaupt, Hannes Rotzinger, Michael Marthaler, Alexander Lukashenko, Amadeus Dieter, Alexey V. Ustinov, Martin Weides, David P. Pappas
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
published pages: 32601, ISSN: 0003-6951, DOI: 10.1063/1.4940230
Applied Physics Letters 108/3 2019-11-06
2018 Schneider, Andre; Braumüller, Jochen; Guo, Lingzhen; Stehle, Patrizia; Rotzinger, Hannes; Marthaler, Michael; Ustinov, Alexey V.; Weides, Martin
Local Sensing with the Multi-Level AC Stark Effect
published pages: 62334, ISSN: 2469-9934, DOI: 10.1103/PhysRevA.97.062334
Physical Review A 97 2019-11-06
2017 Lukas Grünhaupt, Uwe von Lüpke, Daria Gusenkova, Sebastian T. Skacel, Nataliya Maleeva, Steffen Schlör, Alexander Bilmes, Hannes Rotzinger, Alexey V. Ustinov, Martin Weides, Ioan M. Pop
An argon ion beam milling process for native AlO x layers enabling coherent superconducting contacts
published pages: 72601, ISSN: 0003-6951, DOI: 10.1063/1.4990491
Applied Physics Letters 111/7 2019-11-06
2017 Jochen Braumüller, Michael Marthaler, Andre Schneider, Alexander Stehli, Hannes Rotzinger, Martin Weides, Alexey V. Ustinov
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-017-00894-w
Nature Communications 8/1 2019-11-06
2016 Jan-Michael Reiner, Michael Marthaler, Jochen Braumüller, Martin Weides, Gerd Schön
Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.94.032338
Physical Review A 94/3 2019-11-06
2018 Isabella Boventer, Marco Pfirrmann, Julius Krause, Yannick Schön, Mathias Kläui, Martin Weides
Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature
published pages: 9, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.97.184420
Physical Review B 97/18 2019-11-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUANTUMMAGNONICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUANTUMMAGNONICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Explaining Transnational Jihad - Patterns of Escalation and Containment

Read More  

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  


Foundations of Verifiable Computing

Read More