Opendata, web and dolomites

PULTAR

Delivery of PULmonary Therapeutics through TARgetted Delivery using Phononics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PULTAR project word cloud

Explore the words cloud of the PULTAR project. It provides you a very rough idea of what is the project "PULTAR" about.

3m    routes    transits    accepted    genes    droplet    nebulisation    patients    50m    appealing    treating    barriers    235    pulmonary    closely    wisdom    worldwide    generally    types    deaths    hypertension    amount    million    respiratory    mouse    nebuliser    extremely    similarly    quality    sizes    cystic    model    vascular    enhanced    chronic    asthma    suffer    ultrasonic    gt    mu    shown    create    monodisperse    biologics    strand    diseases    market    delivered    improves    lung    prototype    proprietary    precise    inhalation    team    medicine    selective    according    lungs    gene    dalys    treatment    arterial    reduce    epithelium    industry    droplets    clinical    tissue    data    aerosol    people    380b    forms    cells    efficacy    therapies    therapeutic    commercial    aerosols    disease    healthcare    rna    outcomes    limitations    substantial    therapy    difficult    obstructive    64m    medicines    fibrosis    start    regions    again    innovation    drug    anatomical   

Project "PULTAR" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙791 €
 EC max contribution 149˙791 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2016-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 149˙791.00

Map

 Project objective

According to the WHO 235 million people suffer from asthma and 64M people have chronic obstructive pulmonary disease, leading to 3M deaths per year worldwide. The cost of treating patients with all forms of lung disease is ~ €380B p.a., leading to the loss of >50M DALYS. Generally, patients with such respiratory diseases are treated by inhalation of medicines within aerosols, where the therapy (including medicine or biologics used in gene therapy) can be targeted directly to the lung. The accepted wisdom is that such pulmonary delivery requires aerosol droplet sizes of between 1 and 5 μm. We have now shown that by using a new ultrasonic technology, we can create monodisperse aerosol droplets, which could be used for therapeutic delivery of medicines, genes and RNA to specific regions in the lungs. In one strand of the work we aim to demonstrate that this precise nebulisation technology improves the efficacy of treatment through enhanced drug uptake. In a second strand, we will demonstrate selective targeting of different tissue types in the lungs. For example, the epithelium in cystic fibrosis patients is currently extremely difficult to access leading to limitations in the amount and quality of data obtained for pre-clinical and clinical gene therapies. Similarly, targeting vascular cells is an appealing treatment for patients with pulmonary arterial hypertension, although, again, effective delivery necessitates that the therapeutic system transits defined and substantial anatomical barriers. The overall aim is to demonstrate that this new technology can define routes to new therapies, improve clinical outcomes and reduce healthcare costs. To achieve this we will develop a prototype nebuliser based upon proprietary technology and show that different medicines and gene therapies can be delivered effectively to the lungs of a model mouse. We will also start to build a commercial team and work closely with industry to deliver impact and innovation to the market.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PULTAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PULTAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More