Opendata, web and dolomites

PROMETHEUS SIGNED

Novel Cells for Organ Repair

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PROMETHEUS" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: Munich
postcode: 80539
website: www.mpg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (Munich) coordinator 2˙500˙000.00

Map

 Project objective

In adult organisms, the natural ability to regenerate tissues damaged by injury or aging resides in multipotent tissue-specific precursors in local microenvironments. The number of these precursors is often either limited or declines sharply with age. Moreover, long-term adverse side effects of cancer treatments affect patients of any age. Such treatments tend to diminish the stem cell and progenitor cell populations.

In mammals pluripotency occurs only in the early embryo. Since 2006 it has been possible to turn ordinary somatic cells into pluripotent stem cells by using transcription factors (cellular reprogramming). However, pluripotency bears a risk for tumor formation, and thus conventional reprogramming strategies face the challenge of managing uncontrolled growth when applied to organs and tissues.

I propose to replenish the tissue-specific precursor cell pool by directly programming local somatic cell types into relevant precursors. My team has already generated such precursor cell types in vitro but not yet in vivo. To bridge the so far insurmountable gap between current in vitro and future in vivo use, we need innovative strategies. I propose to utilize the emerging field of organoid technology (small cell clusters of self-organized tissue) in a scalable automated system to screen possible factors for converting somatic cells into tissue-resident precursors and evaluate them in vivo. This high-risk, high-gain approach enables the development of a new method for testing reprogramming strategies in 3D tissues. Our work indicates that somatic cells can be programmed to become multipotent somatic precursor cells with an efficiency above 50%. My approach circumvents the generation of a pluripotent state and its inherent tumor forming potential. It provides essential insights into the underlying cellular mechanisms of stem cell and tissue renewal in the natural niches and offers the potential of these somatic precursors to regenerate injured or aged tissues.

 Publications

year authors and title journal last update
List of publications.
2019 Sergiy Velychko, Kenjiro Adachi, Kee-Pyo Kim, Yanlin Hou, Caitlin M. MacCarthy, Guangming Wu, Hans R. Schöler
Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs
published pages: 737-753.e4, ISSN: 1934-5909, DOI: 10.1016/j.stem.2019.10.002
Cell Stem Cell 25/6 2020-03-05
2019 Sergiy Velychko, Kyuree Kang, Sung Min Kim, Tae Hwan Kwak, Kee-Pyo Kim, Chanhyeok Park, Kwonho Hong, ChiHye Chung, Jung Keun Hyun, Caitlin M. MacCarthy, Guangming Wu, Hans R. Schöler, Dong Wook Han
Fusion of Reprogramming Factors Alters the Trajectory of Somatic Lineage Conversion
published pages: 30-39.e4, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2019.03.023
Cell Reports 27/1 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETHEUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETHEUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

AllergenDetect (2019)

Comprehensive allergen detection using synthetic DNA libraries

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More