Opendata, web and dolomites

H2Bio2Energy SIGNED

Operando FTIR spectro-electrochemistry of hydrogenases: unraveling the basis of biological H2 production for innovative clean energy technologies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 H2Bio2Energy project word cloud

Explore the words cloud of the H2Bio2Energy project. It provides you a very rough idea of what is the project "H2Bio2Energy" about.

ongoing    programs    coordinated    international    deep    protein    secure    building    environmental    transfer    bioinspired    varied    efficient    horizon    societal    demand    biotechnological    speakers    spectroscopic    pt    electron    gain    university    active    fe    renewable    oxford    clean    rates    bidirectional    sites    fuels    infrared    metalloenzymes    fuel    function    nature    audiences    skills    industrial    site    expand    electrochemistry    enzymes    scientific    catalysis    proton    fellowship    prior    structural    aligned    simultaneous    iron    vincent    ir    bio    conventional    rearrangements    cheap    technologies    catalyse    energy    expertise    techniques    visiting    tackle    continuous    structure    hydrogen    turnover    enzyme    spectroscopy    start    hydrogenases    strengthen    prof    fefe    training    acquiring    exceptional    uses    biological    water    fossil    host    world    class    electrochemical    search    networks    career    h2    group    film    works    excellence    ethical    outreach    profile    relationships    innovative   

Project "H2Bio2Energy" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-08   to  2020-01-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Ongoing search for renewable energy technologies is essential in Europe to tackle the continuous increase in demand and the environmental and ethical concerns. Hydrogen is a promising renewable fuel, but so far its production is not clean as the conventional industrial techniques start from fossil fuels. Production of H2 by biological, biotechnological or bioinspired methods would solve this problem and the study of FeFe-hydrogenases is a key step in this process. For this reason, the proposal is well aligned with the EU Societal Challenges in “Secure, clean and efficient energy”. FeFe-hydrogenases are efficient metalloenzymes that catalyse H2 production from water at high turnover rates, using Fe, rather than Pt active sites. Building on my previous experience with these enzymes, in this project I will apply a highly innovative approach to investigate how nature uses cheap iron to catalyse H2 production. Protein film infrared (IR) electrochemistry was recently developed by Prof Vincent at the University of Oxford, allowing electrochemical triggering of enzyme catalysis with simultaneous IR spectroscopic study of how the enzyme works. This will provide a deep understanding of enzyme structure/function relationships, from coordinated electron and proton transfer to structural rearrangements at the Fe site. Due to my prior expertise in FeFe hydrogenases which are not studied in the host group, and Oxford’s excellence in bio-spectroscopy, the Fellowship will promote exceptional bidirectional knowledge transfer. Dissemination of research through Oxford’s outreach programs will increase the impact of the project to varied audiences. Access to the well-established training and career development activities in Oxford, and the world-class programs of visiting speakers, will advance my career as I gain new knowledge and skills, enhance my scientific profile by acquiring international experience, expand my scientific horizon, strengthen my skills, and build new networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "H2BIO2ENERGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "H2BIO2ENERGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More