Opendata, web and dolomites

H2Bio2Energy SIGNED

Operando FTIR spectro-electrochemistry of hydrogenases: unraveling the basis of biological H2 production for innovative clean energy technologies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 H2Bio2Energy project word cloud

Explore the words cloud of the H2Bio2Energy project. It provides you a very rough idea of what is the project "H2Bio2Energy" about.

conventional    building    prior    continuous    transfer    skills    training    uses    site    innovative    fuels    expertise    ir    hydrogen    clean    career    societal    structure    works    cheap    catalyse    expand    biotechnological    fe    excellence    bidirectional    scientific    exceptional    varied    strengthen    protein    bio    water    visiting    active    international    proton    film    audiences    aligned    metalloenzymes    structural    technologies    speakers    spectroscopy    pt    acquiring    tackle    ongoing    infrared    fefe    outreach    networks    deep    gain    programs    horizon    prof    turnover    iron    oxford    start    catalysis    biological    search    group    techniques    bioinspired    nature    university    world    relationships    energy    simultaneous    efficient    electrochemical    ethical    enzyme    h2    fellowship    sites    industrial    enzymes    class    electrochemistry    profile    vincent    spectroscopic    rearrangements    hydrogenases    fossil    fuel    electron    secure    host    demand    renewable    rates    function    environmental    coordinated   

Project "H2Bio2Energy" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-08   to  2020-01-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Ongoing search for renewable energy technologies is essential in Europe to tackle the continuous increase in demand and the environmental and ethical concerns. Hydrogen is a promising renewable fuel, but so far its production is not clean as the conventional industrial techniques start from fossil fuels. Production of H2 by biological, biotechnological or bioinspired methods would solve this problem and the study of FeFe-hydrogenases is a key step in this process. For this reason, the proposal is well aligned with the EU Societal Challenges in “Secure, clean and efficient energy”. FeFe-hydrogenases are efficient metalloenzymes that catalyse H2 production from water at high turnover rates, using Fe, rather than Pt active sites. Building on my previous experience with these enzymes, in this project I will apply a highly innovative approach to investigate how nature uses cheap iron to catalyse H2 production. Protein film infrared (IR) electrochemistry was recently developed by Prof Vincent at the University of Oxford, allowing electrochemical triggering of enzyme catalysis with simultaneous IR spectroscopic study of how the enzyme works. This will provide a deep understanding of enzyme structure/function relationships, from coordinated electron and proton transfer to structural rearrangements at the Fe site. Due to my prior expertise in FeFe hydrogenases which are not studied in the host group, and Oxford’s excellence in bio-spectroscopy, the Fellowship will promote exceptional bidirectional knowledge transfer. Dissemination of research through Oxford’s outreach programs will increase the impact of the project to varied audiences. Access to the well-established training and career development activities in Oxford, and the world-class programs of visiting speakers, will advance my career as I gain new knowledge and skills, enhance my scientific profile by acquiring international experience, expand my scientific horizon, strengthen my skills, and build new networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "H2BIO2ENERGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "H2BIO2ENERGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

VINCI (2020)

The Value of Information and Choice to Improve Control.

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More