Opendata, web and dolomites


Reactions That Translate mRNA into Drug-like Molecules

Total Cost €


EC-Contrib. €






 TRIGGDRUG project word cloud

Explore the words cloud of the TRIGGDRUG project. It provides you a very rough idea of what is the project "TRIGGDRUG" about.

synergy    harnessed    cope    copy    amplification    recognition    cell    cancer    activated    worlds    reaction    personalized    therapy    small    genes    cure    translocation    drug    output    sequencing    formed    caused    patient    triggered    reactions    couple    chemical    read    provides    kinase    molecule    turnover    2040    rewire    inside    form    acyl    sequence    active    death    perturbation    photodynamic    generation    transfer    molecules    tool    reactive    synthesis    translate    look    alkylidene    eliminate    nucleic    promoted    protein    nutshell    inhibition    how    express    data    induce    mrna    healthy    peptidomimetics    peptides    hijack    advantage    expression    disease    molecular    cellular    transcriptome    expressed    identity    template    instructors    aberrantly    idea    mutation    accordingly    validated    opportunity    inhibitors    gene    single    reactivity    triggers    cells    acid    deregulated    apoptosis    chemistry    rna   

Project "TRIGGDRUG" data sheet

The following table provides information about the project.


Organization address
city: BERLIN
postcode: 10117

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙470˙400 €
 EC max contribution 2˙470˙400 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2020-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HUMBOLDT-UNIVERSITAET ZU BERLIN DE (BERLIN) coordinator 2˙470˙400.00


 Project objective

How could a molecular cancer therapy look like in 2040? In cancer, gene expression is deregulated due to amplification, mutation and translocation of genes. Next generation RNA sequencing provides us with the opportunity to identify the number and identity of the gene products aberrantly expressed in a patient. But do we have methods that take advantage of the personalized sequence data? In this research project we propose the idea to use the RNA molecules expressed upon disease-type gene expression as instructors for the chemical synthesis of drug-like molecules that cure the disease. Accordingly, drug-like molecules would only be formed in those cells that express the disease-specific RNA molecules. Such a personalized molecular therapy would eliminate side effects caused by unwanted perturbation of healthy cells. The idea to use cellular RNA molecules as triggers for drug synthesis requires methods that couple RNA recognition with a change of chemical reactivity. Reactive molecules must be able to “read” and “translate” the sequence of a RNA molecule into a drug-like output. We will develop mRNA-triggered reactions that i) proceed with turnover in template to cope with low mRNA copy numbers and ii) allow the single-step synthesis of highly active drug-like molecules to address deregulated protein targets inside cancer cells. To achieve this aim, we will advance chemical acyl transfer and alkylidene transfer reactions. The reactions on disease-specific mRNA will form peptides/peptidomimetics/small molecule-based kinase inhibitors which will induce apoptosis in cancer cells. We will target validated drug targets. Synergy between the nucleic acid and protein worlds will be harnessed. Furthermore, we will develop a RNA-promoted reaction with turnover beyond product inhibition. This will enable a transcriptome-activated photodynamic therapy. In a nutshell, we will develop a chemistry-based tool to hijack disease mRNA and rewire the cell death program.


year authors and title journal last update
List of publications.
2018 Jasmine Chamiolo, Ge‐min Fang, Felix Hövelmann, Dhana Friedrich, Andrea Knoll, Alexander Loewer, Oliver Seitz
Comparing Agent‐Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging
published pages: , ISSN: 1439-4227, DOI: 10.1002/cbic.201800526
ChemBioChem 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRIGGDRUG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRIGGDRUG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Pathogenesis and treatment of splicing factor mutant myelodysplastic syndromes

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

FICOMOL (2019)

Field Control of Cold Molecular Collisions

Read More