Opendata, web and dolomites

SCENT SIGNED

SCENT: Hybrid Gels for Rapid Microbial Detection

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCENT project word cloud

Explore the words cloud of the SCENT project. It provides you a very rough idea of what is the project "SCENT" about.

identification    microbial    bacteria    receptors    detection    fast    stability    tools    selective    antimicrobial    olfactory    gels    nose    sensors   

Project "SCENT" data sheet

The following table provides information about the project.

Coordinator
NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country Portugal [PT]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme /ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-12-01   to  2020-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT PT (CAPARICA) hostInstitution 1˙500˙000.00

Mappa

 Project objective

Antimicrobial resistant bacteria are a global threat spreading at an alarming pace. They cause over 25,000 annual deaths in the EU, and represent an economic burden exceeding €1.5 billion a year. Current methods for microbial detection in clinical settings take about 24-36 h, but for slow-growing bacteria, as those causing tuberculosis, it can take more than a week. Early-detection and confinement of the infected individuals are the only ways to provide adequate therapy and control infection spread. Thus, tools for rapid identification of bacterial infections are greatly needed. The analysis of microbial volatile metabolites is an area of increasing interest in diagnostics. Recent works demonstrate that fast microbial identification is possible with chemical nose sensors. These sensors usually present limited stability and selectivity, and require aggressive conditions during processing and operation. Bioinspired nose sensors employing biological olfactory receptors are an alternative. Unfortunately, their complexity and low stability are a limitation. My group recently discovered a new class of stimulus-responsive gels which tackle these key challenges. Our gels are customisable and have a low environmental footprint associated. I intend to further explore their potential to advance the field of odour detection, while providing new tools for the scientific community. I will focus specifically in fast microbial detection. To accomplish this, I propose to 1) build libraries of hybrid gels with semi-selective and selective properties, 2) generate odorant specific peptides mimicking olfactory receptors, 3) fully characterise the gels, 4) assemble artificial noses for analysis of microbial volatiles, 5) create databases with organism-specific signal signatures, 6) identify pathogenic bacteria, including those with acquired antimicrobial-resistances. This project is a timely approach which will place Europe in the forefront of infectious disease control.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCENT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCENT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PARSe (2018)

Program Analysis and Reorganization, as a Service

Read More  

DRAIOCHT (2019)

DRAIOCHT- A low-cost minimally invasive platform medical device for the treatment of disorders of the cardiovascular system.

Read More  

HEALIGRAFT (2018)

Synergistic growth factor microenvironments for veterinary bone regeneration.

Read More