Opendata, web and dolomites

channelopathies SIGNED

Type 1 reyanodine receptor Structure and regulation by post-translational modifications and small molecules.

Total Cost €


EC-Contrib. €






 channelopathies project word cloud

Explore the words cloud of the channelopathies project. It provides you a very rough idea of what is the project "channelopathies" about.

aring    crystallography    ion    adrenergic    565    stimulation    cardiac    endoplasmic    picture    dynamic    cytosolic    skeletal    microscopy    forming    types    modifications    particles    stores    ec    atomic    ryr    structural    contraction    identical    mechanism    gating    small    calcium    dystrophy    molecules    ryanodine    channels    native    muscles    data    atp    length    details    dantrolene    regulated    ray    rycals    fragments    resolution    ryr2    folds    ryr1    binding    coupling    pore    amongst    hyperthermia    electron    mammalian    basis    translational    drugs    cryo    protomers    conformations    intracellular    model    caffeine    post    excitation    tertiary    closed    unprecedented    signaling    kda    cell    classification    structure    ryrs    transmembrane    channel    placing    ligands    completing    multiple    comprised    notably    receptor    unambiguously    safer    potent    sarcoplasmic    activated    malignant    em    regulation    broad    full    revealed    muscular    sites    drug    release    domains    reticuli   

Project "channelopathies" data sheet

The following table provides information about the project.


Organization address
address: .
postcode: 84105

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website
 Total cost 182˙509 €
 EC max contribution 182˙509 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

This proposal is aiming at understanding the structural basis of the type 1 ryanodine receptor (RyR1) regulation by post-translational modifications and by small molecules. RyR1 is present on the sarcoplasmic and endoplasmic reticuli of many mammalian cell types, most notably, in skeletal muscles. RyR channels are required for calcium release from intracellular stores, a process essential for excitation-contraction (EC) coupling in skeletal (RyR1) and cardiac (RyR2) muscles. They are amongst the largest ion channels, comprised of the four identical ~565 kDa channel-forming protomers. RyRs channel activity is regulated by post-translational modifications through multiple signaling pathways including adrenergic stimulation. We have obtained a 4.3 Å resolution cryo-electron microscopy (Cryo-EM) structure of RyR1 in the closed state and a 3.6 Å structure in an activated state. An atomic model was built, defining the transmembrane pore, placing all cytosolic domains as tertiary folds and unambiguously identifying small ligands including calcium, ATP, caffeine and the ryanodine in unprecedented details. In both data sets obtained, 3-D classification of particles revealed multiple distinct conformations providing a broad detailed picture of the dynamic process of RyR1 gating. Here, I aim at improving and completing the atomic model of RyR1 and at determining the structural basis for RyR1 regulation by post-translational modifications and by small molecules. I will use X-ray crystallography to determine the high-resolution structure of the full length RyR1 as well as small fragments including the transmembrane pore and drug binding sites. Cryo–EM and 3-D classification will be used to identify structural changes induced by post-translational modifications and by native ligands and drugs binding. The mechanism of drugs targeting RyRs such as dantrolene and rycals can lead to structure-based design of more potent/safer drugs for malignant hyperthermia and muscular dystrophy.


year authors and title journal last update
List of publications.
2017 Ran Zalk, Andrew R. Marks
Ca 2+ Release Channels Join the ‘Resolution Revolution’
published pages: 543-555, ISSN: 0968-0004, DOI: 10.1016/j.tibs.2017.04.005
Trends in Biochemical Sciences 42/7 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHANNELOPATHIES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHANNELOPATHIES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More