Opendata, web and dolomites


Plasmonically-enhanced III-V nanowire lasers on silicon for integrated communications

Total Cost €


EC-Contrib. €






 PLASMIC project word cloud

Explore the words cloud of the PLASMIC project. It provides you a very rough idea of what is the project "PLASMIC" about.

orientation    passive    ambition    bottleneck    team    hybrid    assisted    formed    silicon    interconnect    interface    interconnects    light    layers    barriers    threshold    energy    plasmonically    medium    materials    doped    losses    half    caused    vlsi    nws    cavity    near    confinement    transition    scaling    nitrides    gratings    alternative    semiconductor    advantages    device    desirable    feedback    metal    conventional    effect    waveguide    components    ir    dimensions    nanoscale    enhanced    dimensional    nw    plasmonics    compatibility    plasma    communications    speed    electrical    reduce    deposition    form    nanowire    compounds    epitaxy    photonic    mode    material    semiconductors    frequency    template    lasing    lasers    tune    density    limit    si    solutions    aligned    reducing    chip    subthreshold    operation    grow    limited    lithographic    emitters    explore    plasmonic    efficiency    waveguides    dielectric    tuning    plasmic    lower    optical    photonics    integration    primordial    wavelength    size    exists    metals    gain    pioneering    platform    diffraction   

Project "PLASMIC" data sheet

The following table provides information about the project.


Organization address
postcode: 8803

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙941˙750 €
 EC max contribution 1˙941˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH CH (RUESCHLIKON) coordinator 1˙941˙750.00


 Project objective

The ambition of PLASMIC is to address the bottleneck caused by electrical interconnects and develop on-chip optical interconnect solutions based on plasmonically-enhanced nanoscale emitters. Nanoscale photonic components are desirable for on-chip communications because of density, speed and because reducing the size of the cavity might reduce the lasing threshold. Conventional photonics are limited in scale by the diffraction-limit to dimensions of half of the wavelength of light in the material. This limit does not apply to plasmonics, an optical mode that exists at the interface between a metal and a dielectric. Thus, they have a great potential for applications where down-scaling and confinement are primordial. One of the barriers for applying plasmonics is the large losses associated with the metals. Thus in PLASMIC alternative plasmonic metals will be investigated based on their potential for tuning, VLSI compatibility, deposition methods and achieving lower optical losses in the near-IR. I will focus on highly doped semiconductors, metal nitrides, as well as multi-layers and compounds to form new plasmonic materials. Specifically, I will evaluate the use of the field-effect to achieve the semiconductor-metal transition to tune the plasma frequency. New pioneering device concepts for plasmonic-photonic emitters on a silicon platform integrated with passive silicon photonic waveguides will be developed. To implement the gain medium for the lasers, I will exploit a novel nanowire (NW) integration approach: Template-Assisted Epitaxy. The unique advantages make it possible to grow III-V NWs on any orientation of silicon and aligned to lithographic features. The devices will be based on a hybrid cavity formed between the NW and a Si waveguide with gratings to provide feedback. My team and I will explore dimensional scaling potential as well as the energy efficiency of plasmonic and photonic devices operating both in a lasing as well as in a subthreshold operation mode.


year authors and title journal last update
List of publications.
2018 M. Sousa, S. Mauthe, B. Mayer, Wirths, H. Schmid, K.E. Moselund
Monolithic integration of III-V on Si applied to lasing micro-cavities: insights from STEM and EDX
published pages: , ISSN: , DOI: 10.1109/nano.2018.8626223
IEEE Nano, Track 3. Nanoelectronics: New Materials II yearly 2019-07-08
2018 S. Mauthe, H. Schmid, B. Mayer, S. Wirths, P. Staudinger, Y. Baumgartner, C. Convertino, L. Czornomaz, M. Sousa and K. E. Moselund
Monolithic integration of III-Vs on silicon for electronic and photonic applications (Invited)- as an invited talk it was not peer reviewed, not available online yet
published pages: , ISSN: , DOI:
44th Micro- and Nanoengineering conference, MNE yearly 2019-07-08
2018 Stephan Wirths, Benedikt F. Mayer, Heinz Schmid, Marilyne Sousa, Johannes Gooth, Heike Riel, Kirsten E. Moselund
Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon
published pages: 2169-2175, ISSN: 1936-0851, DOI: 10.1021/acsnano.7b07911
ACS Nano 12/3 2019-07-08
2019 Benedikt F. Mayer, Stephan Wirths, Svenja Mauthe, Philipp Staudinger, Marilyne Sousa, Joel Winiger, Heinz Schmid, Kirsten E. Moselund
Microcavity Lasers on Silicon by Template-Assisted Selective Epitaxy of Microsubstrates
published pages: 1-1, ISSN: 1041-1135, DOI: 10.1109/lpt.2019.2916459
IEEE Photonics Technology Letters 2019-06-06
2019 Svenja Mauthe, Noelia Vico Trivino, Yannick Baumgartner, Marilyne Sousa, Daniele Caimi, Thilo Stoeferle, Heinz Schmid, Kirsten Moselund
InP-on-Si Optically Pumped Microdisk Lasers via Monolithic Growth and Wafer Bonding
published pages: 1-1, ISSN: 1077-260X, DOI: 10.1109/jstqe.2019.2915924
IEEE Journal of Selected Topics in Quantum Electronics 2019-06-06
2018 Philipp Staudinger, Svenja Mauthe, Kirsten E. Moselund, Heinz Schmid
Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes
published pages: 7856-7862, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.8b03632
Nano Letters 18/12 2019-05-04
2018 S. Sant and A. Schenk, B. Mayer, S. Wirths, S. Mauthe, H. Schmid, and K. E. Moselund
Modeling whispering gallery mode III-V micro-lasers monolithically integrated on Silicon - not presented yet
published pages: , ISSN: , DOI:
Numerical Simulation of Optoelectronic Devices (NUSOD) annually 2019-05-29
2018 S. Mauthe, H. Schmid, B. Mayer, S. Wirths, C. Convertino, Y. Baumgartner, L. Czornomaz, M. Sousa, P. Staudinger, H. Riel and K. E. Moselund
Monolithic Integration of III-V on silicon for photonic and electronic applications (Invited) - invited, hence not peer reviewed
published pages: , ISSN: , DOI:
Device Research Conference annually 2019-05-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLASMIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLASMIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoBeam (2019)

Quantum Coherent Control: Self–Interference of Electron Beams with Nanostructures

Read More  

EmbryoMethFunc (2019)

Cell-Type Specific DNA Methylation Changes During Mammalian Development: Beyond Mapping

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More