Opendata, web and dolomites

PyroPhosphoProtein SIGNED

Site-selective chemical pyrophosphorylation of proteins using tag-and-modify approach.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PyroPhosphoProtein project word cloud

Explore the words cloud of the PyroPhosphoProtein project. It provides you a very rough idea of what is the project "PyroPhosphoProtein" about.

completely    sulphur    chemically    protein    ptm    transcription    mimics    chains    introduce    reacts    assumed    proof    interaction    installing    mechanism    networks    inositol    pyrophosphorylated    position    desired    converted    analogues    gcr1    tag    influence    pyrophosphorylation    discovered    cysteine    physiological    missing    reversibility    cellular    acids    direct    association    diversify    modifications    messengers    reversible    exploring    date    bearing    signalling    strategy    transduction    eukaryotic    length    tool    phosphatase    relies    preparation    pyrophosphoproteins    carbon    proteins    vivo    synthesis    mediated    unknown    gcr2    mild    awaited    technique    prepared    limited    full    yeast    gain    genes    site    post    explored    residue    mechanistic    cells    proteome    pyrophosphate    dehydroalanine    biomolecules    chemical    modify    nearly    function    biological    resistant    translational    nucleophiles    enzymes    glycolytic    invaluable    signal    lack    ptms    expression    amino    phosphorylation    transcriptional    almost   

Project "PyroPhosphoProtein" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Post-translational modifications (PTMs) occur on nearly all proteins in eukaryotic cells to diversify their proteome. These chemical modifications of various amino acids side chains can influence protein association with other biomolecules, or control cellular signal transduction networks and the activity of enzymes. Reversible protein phosphorylation is one of the most common PTMs. It is considered as a signalling mechanism involved in almost all cellular processes. On the other hand, protein pyrophosphorylation mediated by the inositol pyrophosphate messengers was discovered recently and its function on proteins is completely unknown. Up to date, direct evidence of its role in vivo is still missing. Exploring the potential role of protein pyrophosphorylation is limited by lack of a robust method of installing pyrophosphate residue in desired position of full length proteins. Here we propose chemical site-specific pyrophosphorylation of proteins using “tag-and-modify” approach. It relies on expression of protein bearing cysteine in the position of interest. The cysteine is then chemically converted to dehydroalanine (“tag”), which reacts with various sulphur or carbon nucleophiles under mild conditions to introduce pyrophosphate PTM mimics (“modify”). The method allows preparation of not only pyrophosphorylated proteins, but also their phosphatase resistant analogues. These will be invaluable for mechanistic studies of pyrophosphorylation reversibility and its biological role. As a proof of concept, well defined chemically pyrophosphorylated transcriptional factor GCR1 will be prepared by proposed strategy. The influence of GCR1 pyrophosphorylation on interaction with GCR2 will be explored, since this is assumed to control transcription of glycolytic genes in yeast. Our new technique for the site-specific chemical synthesis of pyrophosphoproteins will provide long awaited tool to gain a better understanding of the physiological role of this novel PTM.

 Publications

year authors and title journal last update
List of publications.
2017 Jitka Dadová, Kuan-Jung Wu, Patrick G. Isenegger, James C. Errey, Gonçalo J. L. Bernardes, Justin M. Chalker, Lluís Raich, Carme Rovira, Benjamin G. Davis
Precise Probing of Residue Roles by Post-Translational β,γ-C,N Aza-Michael Mutagenesis in Enzyme Active Sites
published pages: 1168-1173, ISSN: 2374-7943, DOI: 10.1021/acscentsci.7b00341
ACS Central Science 3/11 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PYROPHOSPHOPROTEIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PYROPHOSPHOPROTEIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

ROSETTA (2020)

Deciphering the Role of aberrant glycOSylation in the rEsponse to Targeted TherApies for breast cancer

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More