Opendata, web and dolomites

PyroPhosphoProtein SIGNED

Site-selective chemical pyrophosphorylation of proteins using tag-and-modify approach.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PyroPhosphoProtein project word cloud

Explore the words cloud of the PyroPhosphoProtein project. It provides you a very rough idea of what is the project "PyroPhosphoProtein" about.

genes    proteins    bearing    transduction    function    mechanism    enzymes    biomolecules    pyrophosphate    full    phosphorylation    invaluable    cysteine    ptms    expression    amino    nearly    discovered    mild    diversify    modifications    protein    analogues    chemical    vivo    interaction    physiological    post    desired    proof    direct    yeast    pyrophosphorylated    technique    awaited    chains    missing    completely    introduce    gcr2    pyrophosphoproteins    phosphatase    inositol    mimics    transcription    eukaryotic    installing    cells    cellular    lack    glycolytic    sulphur    pyrophosphorylation    synthesis    association    proteome    ptm    dehydroalanine    signalling    chemically    reacts    unknown    almost    site    strategy    translational    mediated    carbon    influence    gain    transcriptional    relies    nucleophiles    resistant    converted    length    tool    tag    gcr1    signal    reversibility    acids    mechanistic    limited    modify    messengers    biological    position    explored    reversible    residue    assumed    preparation    exploring    networks    prepared    date   

Project "PyroPhosphoProtein" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Post-translational modifications (PTMs) occur on nearly all proteins in eukaryotic cells to diversify their proteome. These chemical modifications of various amino acids side chains can influence protein association with other biomolecules, or control cellular signal transduction networks and the activity of enzymes. Reversible protein phosphorylation is one of the most common PTMs. It is considered as a signalling mechanism involved in almost all cellular processes. On the other hand, protein pyrophosphorylation mediated by the inositol pyrophosphate messengers was discovered recently and its function on proteins is completely unknown. Up to date, direct evidence of its role in vivo is still missing. Exploring the potential role of protein pyrophosphorylation is limited by lack of a robust method of installing pyrophosphate residue in desired position of full length proteins. Here we propose chemical site-specific pyrophosphorylation of proteins using “tag-and-modify” approach. It relies on expression of protein bearing cysteine in the position of interest. The cysteine is then chemically converted to dehydroalanine (“tag”), which reacts with various sulphur or carbon nucleophiles under mild conditions to introduce pyrophosphate PTM mimics (“modify”). The method allows preparation of not only pyrophosphorylated proteins, but also their phosphatase resistant analogues. These will be invaluable for mechanistic studies of pyrophosphorylation reversibility and its biological role. As a proof of concept, well defined chemically pyrophosphorylated transcriptional factor GCR1 will be prepared by proposed strategy. The influence of GCR1 pyrophosphorylation on interaction with GCR2 will be explored, since this is assumed to control transcription of glycolytic genes in yeast. Our new technique for the site-specific chemical synthesis of pyrophosphoproteins will provide long awaited tool to gain a better understanding of the physiological role of this novel PTM.

 Publications

year authors and title journal last update
List of publications.
2017 Jitka Dadová, Kuan-Jung Wu, Patrick G. Isenegger, James C. Errey, Gonçalo J. L. Bernardes, Justin M. Chalker, Lluís Raich, Carme Rovira, Benjamin G. Davis
Precise Probing of Residue Roles by Post-Translational β,γ-C,N Aza-Michael Mutagenesis in Enzyme Active Sites
published pages: 1168-1173, ISSN: 2374-7943, DOI: 10.1021/acscentsci.7b00341
ACS Central Science 3/11 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PYROPHOSPHOPROTEIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PYROPHOSPHOPROTEIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

PaSION (2018)

A longitudinal assessment of treatment experience, symptoms and potential associations with biomarkers in cancer patients undergoing immune checkpoint inhibitor therapy

Read More  

EVENTS (2020)

Affective work-related daily events, and changing characteristics of the work context: New challenges for management practices to deliver employees’ well-being and workplace performance

Read More