Opendata, web and dolomites


Challenges and Advancements in Virtual Elements

Total Cost €


EC-Contrib. €






 CAVE project word cloud

Explore the words cloud of the CAVE project. It provides you a very rough idea of what is the project "CAVE" about.

space    grid    purposes    respect    posed    spaces       avoiding    accurate    polyhedral    adaptivity    pdes    vem    explicit    numerical    arbitrary    construction    convex    breakthrough    possibly    tetrahedral    matrixes    robustness    acquires    shape    data    theoretical    partial    stiffness    date    galerkin    functions    virtual    conservation    elasticity    complexity    limit    dramatically    deformation    instance    practical    shares    foundations    equations    variational    responds    finite    easily    advantages    differential    first    tough    potentials    model    conforming    efficient    procedure    refinement    discrete    inclusions    innovative    de    bidomain    meshing    hexahedral    coding    scope    satisfaction    unstructured    plus    interesting    span    gain    benchmark    standard    curved    domain    front    integration    keeping    flexible    laws    introducing    distortions    regularity    applicative    grids    handling    mri    computational    faces    exact    polygonal    approximation    discretization    deeper    background    yield    propagation    made    cardiac    material    stronger    meshes   

Project "CAVE" data sheet

The following table provides information about the project.


Organization address
city: MILANO
postcode: 20126

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 980˙634 €
 EC max contribution 980˙634 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-CoG
 Funding Scheme ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2021-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes. The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).


year authors and title journal last update
List of publications.
2019 L. Beirao da Veiga, G. Manzini, L. Mascotto
A posteriori error estimation and adaptivity in hp virtual elements
published pages: , ISSN: 0945-3245, DOI: 10.1007/s00211-019-01054-6
Numerische Mathematik 2019-10-15
2017 L. Beirão da Veiga, A. Chernov, L. Mascotto, A. Russo
Exponential convergence of the hp virtual element method in presence of corner singularities
published pages: 581–613, ISSN: 0029-599X, DOI: 10.1007/s00211-017-0921-7
Numerische Mathematik 138 2019-10-15
2017 L. Beirão da Veiga, F. Dassi, A. Russo
High-order Virtual Element Method on polyhedral meshes
published pages: 1110-1122, ISSN: 0898-1221, DOI: 10.1016/j.camwa.2017.03.021
Computers & Mathematics with Applications 74/5 2019-10-15
2017 L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini, A. Russo
Virtual Element approximation of 2D magnetostatic problems
published pages: 173-195, ISSN: 0045-7825, DOI: 10.1016/j.cma.2017.08.013
Computer Methods in Applied Mechanics and Engineering 327 2019-10-15
2017 Lourenço Beirão da Veiga, Carlo Lovadina, Alessandro Russo
Stability analysis for the virtual element method
published pages: 2557-2594, ISSN: 0218-2025, DOI: 10.1142/S021820251750052X
Mathematical Models and Methods in Applied Sciences 27/13 2019-10-15
2019 Lourenço Beirão da Veiga, Alessandro Russo, Giuseppe Vacca
The Virtual Element Method with curved edges
published pages: , ISSN: 0764-583X, DOI: 10.1051/m2an/2018052
ESAIM: Mathematical Modelling and Numerical Analysis 2019-10-15
2018 L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini, A. Russo
Lowest order Virtual Element approximation of magnetostatic problems
published pages: 343-362, ISSN: 0045-7825, DOI: 10.1016/j.cma.2017.12.028
Computer Methods in Applied Mechanics and Engineering 332 2019-10-15
2018 L. Beira͂o da Veiga, C. Lovadina, G. Vacca
Virtual Elements for the Navier--Stokes Problem on Polygonal Meshes
published pages: 1210-1242, ISSN: 0036-1429, DOI: 10.1137/17m1132811
SIAM Journal on Numerical Analysis 56/3 2019-10-15
2018 Lourenço Beirão da Veiga, Franco Brezzi, L. Donatella Marini, Alessandro Russo
Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
published pages: 399-416, ISSN: 2426-8399, DOI: 10.5802/smai-jcm.40
SMAI Journal of Computational Mathematics 4 2019-10-15
2017 H. Chi, L. Beirão da Veiga, G.H. Paulino
Some basic formulations of the virtual element method (VEM) for finite deformations
published pages: 148-192, ISSN: 0045-7825, DOI: 10.1016/j.cma.2016.12.020
Computer Methods in Applied Mechanics and Engineering 318 2019-10-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RTMFRM (2019)

Room Temperature Magnetic Resonance Force Microscopy

Read More  

VictPart (2019)

Righting Victim Participation in Transitional Justice

Read More  

ECOLBEH (2020)

The Ecology of Collective Behaviour

Read More