Opendata, web and dolomites

CAVE SIGNED

Challenges and Advancements in Virtual Elements

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CAVE project word cloud

Explore the words cloud of the CAVE project. It provides you a very rough idea of what is the project "CAVE" about.

computational    date    differential    deeper    arbitrary    elasticity    stronger    potentials    meshing    integration    cardiac    polygonal    stiffness    data    de    explicit    plus    partial    inclusions    interesting    functions    standard    coding    purposes    variational    spaces    grids       first    construction    grid    faces    discretization    tetrahedral    handling    distortions    breakthrough    shares    deformation    flexible    space    galerkin    convex    propagation    mri    unstructured    discrete    domain    advantages    instance    scope    robustness    posed    benchmark    adaptivity    avoiding    material    curved    foundations    refinement    approximation    introducing    regularity    practical    pdes    model    equations    exact    acquires    efficient    applicative    background    span    numerical    conforming    gain    hexahedral    virtual    satisfaction    innovative    limit    made    meshes    theoretical    vem    yield    dramatically    finite    respect    conservation    possibly    responds    front    bidomain    keeping    easily    procedure    tough    polyhedral    matrixes    complexity    shape    laws    accurate   

Project "CAVE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA 

Organization address
address: PIAZZA DELL'ATENEO NUOVO 1
city: MILANO
postcode: 20126
website: www.unimib.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 980˙634 €
 EC max contribution 980˙634 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-CoG
 Funding Scheme ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA IT (MILANO) coordinator 980˙634.00

Map

 Project objective

The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes. The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).

 Publications

year authors and title journal last update
List of publications.
2019 L. Beirao da Veiga, G. Manzini, L. Mascotto
A posteriori error estimation and adaptivity in hp virtual elements
published pages: , ISSN: 0945-3245, DOI: 10.1007/s00211-019-01054-6
Numerische Mathematik 2019-10-15
2017 L. Beirão da Veiga, A. Chernov, L. Mascotto, A. Russo
Exponential convergence of the hp virtual element method in presence of corner singularities
published pages: 581–613, ISSN: 0029-599X, DOI: 10.1007/s00211-017-0921-7
Numerische Mathematik 138 2019-10-15
2017 L. Beirão da Veiga, F. Dassi, A. Russo
High-order Virtual Element Method on polyhedral meshes
published pages: 1110-1122, ISSN: 0898-1221, DOI: 10.1016/j.camwa.2017.03.021
Computers & Mathematics with Applications 74/5 2019-10-15
2017 L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini, A. Russo
Virtual Element approximation of 2D magnetostatic problems
published pages: 173-195, ISSN: 0045-7825, DOI: 10.1016/j.cma.2017.08.013
Computer Methods in Applied Mechanics and Engineering 327 2019-10-15
2017 Lourenço Beirão da Veiga, Carlo Lovadina, Alessandro Russo
Stability analysis for the virtual element method
published pages: 2557-2594, ISSN: 0218-2025, DOI: 10.1142/S021820251750052X
Mathematical Models and Methods in Applied Sciences 27/13 2019-10-15
2019 Lourenço Beirão da Veiga, Alessandro Russo, Giuseppe Vacca
The Virtual Element Method with curved edges
published pages: , ISSN: 0764-583X, DOI: 10.1051/m2an/2018052
ESAIM: Mathematical Modelling and Numerical Analysis 2019-10-15
2018 L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini, A. Russo
Lowest order Virtual Element approximation of magnetostatic problems
published pages: 343-362, ISSN: 0045-7825, DOI: 10.1016/j.cma.2017.12.028
Computer Methods in Applied Mechanics and Engineering 332 2019-10-15
2018 L. Beira͂o da Veiga, C. Lovadina, G. Vacca
Virtual Elements for the Navier--Stokes Problem on Polygonal Meshes
published pages: 1210-1242, ISSN: 0036-1429, DOI: 10.1137/17m1132811
SIAM Journal on Numerical Analysis 56/3 2019-10-15
2018 Lourenço Beirão da Veiga, Franco Brezzi, L. Donatella Marini, Alessandro Russo
Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
published pages: 399-416, ISSN: 2426-8399, DOI: 10.5802/smai-jcm.40
SMAI Journal of Computational Mathematics 4 2019-10-15
2017 H. Chi, L. Beirão da Veiga, G.H. Paulino
Some basic formulations of the virtual element method (VEM) for finite deformations
published pages: 148-192, ISSN: 0045-7825, DOI: 10.1016/j.cma.2016.12.020
Computer Methods in Applied Mechanics and Engineering 318 2019-10-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More