Opendata, web and dolomites

SEEWHI SIGNED

Solar Energy Enabled for the World by High-resolution Imaging

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SEEWHI" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country Denmark [DK]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-CoG
 Funding Scheme /ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) hostInstitution 2˙000˙000.00

Mappa

 Project objective

THE GOAL We will derive new and fundamental insight in the relation between nano-scale structure and the performance of 3rd generation solar cells, and determine how to apply this in large-scale processing. THE CHALLENGES We currently have a superficial understanding of the correlations between structure and performance of photovoltaic heterojunctions, based on studies of small-scale devices and model systems with characterization techniques that indirectly probe their internal structure. The real structures of optimized devices have never been “seen”, and in devices manufactured by large-scale processing, almost nothing is known about the formation of structures and interfaces. THE SCIENCE We will take a ground-breaking new approach by combining imaging techniques where state of the art is moving in time spans on the order of months, with ultrafast scattering experiments and modelling. The techniques include high resolution X-ray phase contrast and X-ray dark-field tomography, in situ small and wide angle X-ray scattering, resonant scattering and imaging and time resolved studies of charge transport and transfer. To relate our findings to device performance, we will establish full 3D models of charge generation and transport in nano-structured solar cells. THE FOCUS Solution cast solar cells is the only technology that promises fast and cheap industrial scaling, and it is consequently the focus of our efforts. They require a tight control of processing conditions to ensure that the proper nano-structure is formed in the photoactive layers, with optimal contacts to charge transport layers and interfaces. The prime contenders are non-toxic polymer and kesterite solar cells. THE IMPACT Our results may advance 3rd generation, solution-cast solar cells to meet the “unification challenge” where high efficiency, stability and cheap processing combines in a single technology, scalable to the level of gigawatts per day, thus becoming a centrepiece in global energy supply.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEEWHI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEEWHI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

LEAP-EXTREME (2018)

Local Edaphic Adaptation in Plants through Leveraging an Extremophile Model

Read More  

SelectiveTGFb-inhib (2018)

Pro-tumorigenic effects of TGFb - elucidation of mechanisms and development of selective inhibitors

Read More  

DLT (2018)

Deep Learning Theory: Geometric Analysis of Capacity, Optimization, and Generalization for Improving Learning in Deep Neural Networks

Read More